PPI Modulators -Toward next generation therapeutics-

Literature Seminar 2014.5.22 (Thu.) Yusuke Shimizu (M1)

Protein-protein interactions (PPI)

Many cellular process depend upon enzymatic reactions However, proteins rarely act alone and protein-protein interactions (PPIs) mediate a large number of important regulatory pathways

e.g.

- signal transduction
- transport across membranes
- cell metabolism
- muscle contraction

Definition of PPI

Protein-protein interactions is physical contacts established between two or more proteins

We have to consider that...

- The interaction interface is intentional and not accidental i.e., the result of specific selected biomolecular events/forces
- The interaction interface is non-generic, evolved for a specific purpose distinct from totally generic functions such as protein production and degradation

§0 Protein-protein interactions

PPI in signal transduction

Nature Reviews | Cancer

PPI is central to biological processes

<u>Complete mapping of PPI</u> is one of main scopes of current biological research

II Interactome

Interactome

Finding interaction partners for a protein can reveal its function Building entire PPI network is the next step after the "Human Genome Project"

> Network is represented as protein "nodes" linked by interaction "edges"

PPI Determination

Yeast two-hybrid (Y2H)

PPI Determination

Co-immunoprecipitation (CoIP)

7

Analyze

PPI Determination

PPI databases

Acconum	Database Full Name and HDI	DDI Sources	Type of MI	Species	n Proteins	n Interactions			
Actionym			Type of Mi	species	(Dec. 2009)	(Dec. 2003)			
Primary Databases: PPI experimental data (curated from specific SSc & LSc published studies)									
BIND	Biomolecular Interaction Network Database, http://bond. unleashedinformatics.com/	Ssc & Lsc published studies (literature-curated)	PPIs & others	All	[31,972]	[58,266]			
BioGRID	Biological General Repository for Interaction Datasets, http://www. thebiogrid.org/	Ssc & Lsc published studies (literature-curated)	PPIs & others	All	[28,717]	[108,691]			
DIP	Database of Interacting Proteins, http://dip.doe-mbi.ucla.edu/dip/	Ssc & Lsc published studies (literature-curated)	Only PPIs	All	20,728	57,683			
HPRD	Human Protein Reference Database, http://www.hprd.org/	Ssc & Lsc published studies (literature-curated)	Only PPIs	Human	27,081	38,806			
IntAct	IntAct Molecular Interaction Database, http://www.ebi.ac.uk/intact/	Ssc & Lsc published studies (literature-curated)	PPIs & others	All	[60,504]	[202,826]			
MINT	Molecular INTeraction database, http://mint.bio.uniroma2.it/mint/	Ssc & Lsc published studies (literature-curated)	Only PPIs	All	30,089	83,744			
MIPS-MPact	MIPS protein interaction resource on yeast, http://mips.gsf.de/ genre/proj/mpact/	Derived from CYGD	Only PPIs	Yeast	1,500	4,300			
MIPS-MPPI	MIPS Mammalian Protein-Protein Interaction Database, http://mips.gsf.de/proj/ppi	Ssc published studies (literature-curated)	Only PPIs	Mammalian	982	937			
Meta-Databases: PPI experimental data (integrated and unified from different public repositories)									
APID	Agile Protein Interaction DataAnalyzer, http://bioinfow.dep.usal.es/apid/	BIND, BioGRID, DIP, HPRD, IntAct, MINT	Only PPIs	All	56,460	322,579			
MPIDB	The Microbial Protein Interaction Database, http://www.jcvi.org/mpidb/	BIND, DIP, IntAct, MINT, other sets (exp & lit-curated)	Only PPIs	Microbial	7,810	24,295			
PINA	Protein Interaction Network Analysis platform, http://csbiJtdk. helsinki.fi/pina/	BioGRID, DIP, HPRD, IntAct, MINT, MPact	Only PPIs	All	[?]	188,823			
Prediction Databases: PPI experimental and predicted data ("functional interactions", i.e., interactions lato sensu derived from different types of data)									
MiMI	Michigan Molecular Interactions, http://mimi.ncibi.org/MimiWeb/	BIND, BioGRID, DIP, HPRD, IntAct, & nonPPI data	PPIs & others	All	[45,452]	[391,386]			
PIPs	Human PPI Prediction database, http://www.compbio.dundee. ac.uk/www-pips/	BIND, DIP, HPRD, OPHID, & nonPPI data	PPIs & others	Human	[?]	[37,606]			
OPHID	Online Predicted Human Interaction Database, http://ophid. utoronto.ca/	BIND, BioGRID, HPRD, IntAct, MINT, MPact, & nonPPI data	PPIs & others	Human	[?]	[424,066]			
STRING	Known and Predicted Protein-Protein Interactions, http://string. embl.de/	BIND, BioGRID, DIP, HPRD, IntAct, MINT, & nonPPI data	PPIs & others	All	[2,590,259]	[88,633,860]			
UniHI	Unified Human Interactome, http://www.mdc-berlin.de/unihi/	BIND, BIOGRID, DIP, HPRD, IntAct, MINT, & nonPPI data	PPIs & others	Human	[22,307]	[200,473]			

Large scale identification of PPIs generated hundreds of thousands interactions, and they are collected together in specialized biological databases

Traditional inhibitor of protein function

Inhibitors bind to enzyme active site which is

- well-defined
- deep amd less accessible to bulk solvent
- relatively small (100 600 Å²)

§2.0 PPI modulators

PPI inhibitors

PPIs are difficult, unconventional drug target due to

- Large binding interface areas(600-1300 Å²)
- Shallow solvent-exposed surface
- Surfaces differ from small-molecule binding site in shapes and amino acid residue composition

Traditional medicinal chemistry is less effective for PPIs

PPI inhibitors

PPI inhibitors approved for clinical applications today are usually based on humanized monoclonal antibodies (e.g., Tocilizmab, Bevacizumab)

However, antibodies are expensive and often seriously hindered by solubility, route of administration, distribution, and stability problems as well as by the possibility of a strong immune response

Small-molecule inhibitors are the ideal drug for targeting PPIs

Constrained Peptides

It was envisioned to use peptides directly derived from binfing epitopes of target PPI However...

- These peptides adopt only random coil or become structually less defined
- Increased susceptibility to proteolytic degradation
- Reduction in cell wall permeability

Research has focused on generating conformationally robust peptide

§2.1 PPI inhibitors

Constrained secondary structures

J. Am. Chem. Soc. 1991, 113, 9391

Lactam

J. Am. Chem. Soc. 2000, 122, 3007

Covalent link between i, i+3, i+7 Stabilize α-helix

§2.1 PPI inhibitors

C14linkmid successfully disrupted the assembly of gp41 core

PNAS. 2002, 99, 14644

Hydrocarbon stapling

while disulfide and lactam bridges are effective in stabilizing α -helix, such mimetics are not always stable in cells and are generally susceptible to degradation

Stabilized alpha-helix of BCL-2 domains (SAHBs)

All hydrocarbon cross-links was introduced via ring-closing metathesis Metabolically stable α -helix worked as Bcl-2 protein inhibitor

Science, 2004, 305, 1466

§2.1 PPI inhibitors

Metallopeptide

Metal ions play an important role in stabilizing α -helices in nature

e.g. Zinc finger

 Pd^{2+} clip stabilized α -helix in DMF but low helicity (<40%) in water

Hydrogen bond surrogate

gp41-mediated cell fusion inhibitor

Replacing hydrogen bond into covalent linkage stabilized α -helix

Angew. Chem. Int. Ed. 2008, 47, 1879

§2.1 PPI Inhibitors

Secondary structure mimetics

First non-peptidyl peptidomimetics

Mimetic work as Somatostatin receptor agonist, although with reduce activityrelative to natural hormone

J. Am. Chem. Soc. 1992, 114, 9217

§2.1 PPI Inhibitors

α-helix mimetic

Terphenyl scaffold reasonably mimic the surface of α -helical peptide

J. Am. Chem. Soc. 2001, 123, 5382

§2.1 PPI inhibitors

Protein grafting

Grafting Bak residues to stable aPP gave miniature protein inhibitor

Angew. Chem. Int. Ed. 2001, 40, 3806

§2.1 PPI inhibitors

Cyclotide

Plant-derived disulfide-rich miniprotein with an intringuing circular cysteine knot (CCK)

J. Am. Chem. Soc. 2013, 135, 11623

Approach to small-molecule PPI inhibitors

Approach to small-molecule PPI inhibitors

Fluorescent Polarization (FP)

Fluorescence Resonance Energy Transfer (FRET)

§2.2 Small-molecule PPI inhibitors

A mimic of the smaller functional epitope may suffice for modulators

Science, 1995, 267, 383

§2.2 Small-molecule PPI inhibitors

Small-molecule PPI inhibitor

Crystal structure of p53-MDM2 complex revealed that

- MDM2 possesses a relatively deep hydrophobic pocket
- 15-residue α-helical transactivation domain of p53 insert into the hydrophobic cleft
- In particular, a triad of p53 amino acids (Phe¹⁹, Trp²³, and Leu²⁶) is important

These facts raised expectation for small-molecule PPI inhibitor

Science, 1996, 274, 948

High throughput screening (HTS)

Discovery of Nutlins (MDM2 inhibitor) through HTS (Roche)

cis-imidazoline

Science, 2004, 303, 844

Fragment based drug discovery (FBDD)

Science, 1996, 274, 1531

Fragment based drug design

Discovery of Bcl-2 family protein inhibitor ABT-737 (Abbott)

Allosteric inhibitors

Allosteric inhibitors

Maraviroc (Selzentry[®], Pfizer): HIV-1 entry inhibitor

A marketed small-molecule PPI inhibitor

Mol. Pharmacol. **2008**, 73, 789

PPI stabilizers

FK506 and Cyclosporin A (CsA) are known as immunosuppressive natural products

Their binding proteins were identified and named FKBP and Cyclophilin A (CyPA) Science, 1984, 226, 544

Nature, **1989**, 341, 755

Crystal structure of complex revealed they occupy enzyme active sites Science, 1991, 252, 839 Nature, 1993, 361, 91

However, inhibition of enzymatic activity alone couldn't explain immunosuppression

PPI stabilizers

CyPA-CsA (FKBP-FK506) binds to Calcineurin subunits CnA and CnB CsA and FK506 stabilize PPI and inhibit Cn phosphatase activity

Natural PPI stabilizer

Paclitaxel: isolated from Taxus brevifolia

Paclitaxel allosterically stabilize tubulin heterodimer Suppressed dynamicity of tubulins induces abnormal mitosis and leads to cell death

Paclitaxel works as anticancer drug

PNAS, **2006**, 103, 10166

Small-molecule PPI stabilizer

Tafamidis (Vyndaqel[®], Pfizer): first-in-class transthyretin stabilizer to treat ATTR Approved by the European Medicines Agency in 2011 (Japan in 2013)

PPIs in oncogenic signaling networks

PPIs play essential roles in relaying oncogenic signals

Trends. Pharmacol. Sci. 2013, 34, 393

§3 PPI as anticancer drug target

Rising interest in targeting PPIs

Interest in targeting PPIs as anticancer strategies has increased PPI is a higly promising target for anticancer therapeutics

Approaches toward anticancer therapeutics

Trends. Pharmacol. Sci. 2013, 34, 393

§3 PPI as anticancer drug target

Clinical anticancer PPI modulators

XIAP inhibitor GDC-0152 Completed Phase I safety/pharmacokinetic evaluation

MDM2 inhibitor RG-7112

Phase I for both solid and hematologic malignancies

Bcl-2 proteins inhibitor Navitoclax Phase I for CLL treatment

Progress in PPI researches

The last 10-15 years has been significant progress in PPIM development

Bio ventures focused on PPIM development

Interprotein

Interprotein Corporation is drug discovery company, especially we are involving with early stage drug discovery. And we are focusing on the discovery research of synthetic small-molecule based on *in silico* drug design (INTENDD) and synthetic peptide based on helix-loop-helix micro antibodies technology for targeting protein-protein interaction (PPI) modulations as innovative therapeutics to meet high unmet medical needs.

http://www.interprotein.com/

http://www.prismbiolab.sakura.ne.jp/

Bio ventures focused on PPIM development

2012年7月	免疫生物研究所	IBL-International (独)	ライセンス契約及び 共同開発契約	アルツハイマー病に関与する「アミロイドbタンパク質」測定 診断薬の共同開発契約,原料抗体および測定キット製造のため のノウハウをライセンスアウト	
	アンジェスMG	田辺三菱製薬	ライセンス契約 (基本合意)	HGF 遺伝子治療薬の米国における末梢性血管疾患	
	ペプチドリーム	第一三共	マルチターゲット 探索契約	ベブチド医薬の候補化合物を創製	
2012年6月	ツーセル	中外製薬	ライセンス契約 (優先交渉権)	潜膜由来MSCを用いた軟骨再生医療,株式引受契約	
	ノーベルファーマ	Pfizer	ライセンス契約	シロリムス(技術導入)	
2012年3月	ナノキャリア	エーザイ	共同研究開発	ミセル化ナノ粒子技術	
	オンコセラピー・ サイエンス	塩野義製薬	ライセンス契約	5種の「オンコアンチゲン」由来のペプチドワクチン(ペプチド カクテルワクチン)(2009/2/2~)適用拡大と権利譲渡	
	セルシード	テルモ	基本合意	ヒト骨格筋筋芽細胞シートを用いた心筋再生治療の実用化を目 指した基本合意書を取り交わす	
2012年1月	免疫生物研究所	タカラバイオ	販売契約	日本国内における研究用試薬製品の販売および抗体作製などの 受託サービスの提供,販売契約を締結	
	ノーベルファーマ	アストラゼネカ	製造販売承認	抗ウイルス化学療法剤ホスカビル®注 (技術道入)	
2011年12月	インタープロテイン	武田薬品工業	分子設計に関する 契約	INTENDD (Interprotein's Engine for New Drug Design) を用 い,タンパク質問相互作用を制御する低分子化合物設計	
2011年11月	リプテック	ヤクルト本社	独占的オプション 契約	ヒト化モノクローナル抗体プログラム「LIV-2008」について, オプション権を行使する場合は,別途両社でライセンス契約を 締結(全世界における独占的な開発・製造・販売権を取得)	
				1. 1. T. T. P. M. T. L. L. P. M. P. S. S. S. M.	

レ k T TF なお X 1 た プロティンビニ ブ K 姓 酔細 胸 ぬ k T 冬 能 姓

Bio ventures focused on PPIM development

INTENDD Interprotein's Engine for New Drug Design

- I. Identify ligand binding sites and establish design strategy
 - i. Use of "real space 3D models" in determining protein's ligand binding sites
 - ii. Precise **3D model** plays a key role to find binding pockets for protein-protein interaction inhibitors.

II.SBSG (Structure-Based Scaffold Generation) method as original de novo drug design

- Formation of ligand skeletons search of ring positions SBSG provides high-quality population containing large number of hit compounds.
- ii. Promising compounds are selected by clustering and filtering process based on binding structure based mechanism (but not energy).
- iii. SBSG method achieves real de novo drug design.

http://www.interprotein.com/

Future Outlook

Effort aimed at developing PPIM will be accelerated by a number of recent advances

e.g., HTS, PPI-focused library, fragment discovery, in silico screening

Further understanding of PPI networks will lead to therapeutics for at present undruggable targets

e.g., Creutzfeldt-Jakob disease, Alzheimer's disease

