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Efficient Synthesis Triggered by Site-Selective
Oxidations of Aliphatic C-H Bonds

1. Introduction

Scheme 1 Representative Total Syntheses of Taxol.
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Scheme 2 Biosynthesis of Taxanes (solid arrows imply demonstrated steps).
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Scheme 1

oxidations engendered by the given reaction are indicated in red.

Examples of non-directed and directed Cg,—H functionalization methods to generate halides and oxygen-containing functionality:




2. Developments in Site-Selective Oxidations of Aliphatic C-H

Bond Since 2000

2.1 Oxidations of Aliphatic C-H without Catalytic Amount of Metals

Yang Dan J. Org. Chem. 2003, 68, 6321.

TABLE 1. Selective Oxidation of 4 C—H Bond?
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2 Unless otherwise indicated, all reactions were carried out with a 10 mM seolution of ketone in a 1.5:1 mixture of CH3CN and aqueous
Nay*EDTA solution (0.4 mM) containing 5.0 equiv of Oxone and 15.0 equiv of NaHCOj3 for 24 h at room temperature. ? Isolated yield after
flash column chromatography. < Reaction was carried out for 6 h, and the reaction temperature was increased from 0 *C to room temperature
after the addition of the mixture of Oxone and NaHCO3. ¢ 73% ee; determined by HPLC. ¢ 6a was obtained as a 4:1 mixture of diastereomers.

Yang Dan JACS 1998, 120, 6611.
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M. Inoue Org. Lett. 2009, 11, 3630.
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2.2 Oxidations of Aliphatic C-H Bonds Catalyzed by Metals
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Sanford OL 2010, 12, 532.

Yu Jin-Quan Angew. Chem. Int. Ed. 2005, 44, 7420.
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M. C. White Science 2007, 318, 783.
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2.3 Application of Oxidations of Aliphatic C-H Bonds in the Total Synthesis of

Eudesmane Terpenes

P. S. Baran Nature 2009, 459, 824.
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Figure 1| Outline of the ‘two-phase’ approach to terpene total synthesis. Me, methyl; Ac, acetyl; Bz, benzoyl.
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Figure 2 | Simple, enantioselective total synthesis of dihydrojunenol
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4 h, 56% (17% recovered starting material ). h, H; (1 atm), Pd/C (0.1 equiv.),
EtOAc, RT, 30 min. i, Na (5 equiv.), ELOH, RT, 30 min, 87% over two steps.
Et3N, triethylamine; DCM, dichloromethane; 1,, ioding; Pyr, pyridine; PCC,
pyridinium chlorochromate; MS, molecular sieves; Ph;P,
triphenylphosphine; CH;CN, acetonitrile; LiMe; Cu, lithium
dimethylcuprate; EtOAg, ethyl acetate. For selected physical data for
compounds 11, 12, 13, 14 and 4, see the Supplementary Information.

5.2 p.p-m.=0cy =

0 50.2 p.p.m.>d¢; =27.5 p.p.m.=d¢cs = 26.6 p.p.m.



a CF,CH,NCO

;WEI

Me 0—0 Me Me
Me Me H Me Me M
i A s < °
(TFDO) a
Me Mo —— Me
Hi w,Q H, Hs % O A n, M (@s%) 1O HO
(0] (gram scale) >=0 5: 4-epiajanol (X-ray)
FyCH,C=NH F,CH,C=NH s O 5 S
e i
15 16 ' Me i
(X-ray) o ;
[}
i HO Ho Me i
I e |
! 6 dihydroxyeudesmane |
/ (original structure) E
) = I e e e
d Me Me
4 i.CHCoBr | Me Me |iiagco, A0 o
m ii. Sunlamp AcOH
- —ie M
am 0 B V|7, LioH HO WO @ C
K" o] (43% + 6: dihydroxyeudesmane (X-ray)
F,CH,C=NH 399% 15) (structure reassigned)
<
L 17 -

Figure 3 | Total syntheses of 4-epiajanol (5) and dihydroxyeudesmane
(6) through site-specific C-H oxidations of dihydrojunenol (4). Reagents
and conditions as follows. a, CF;CH:NCO (1.0 equiv.), Pyr (4.0 equiv.),
DMAP (catalytic), DCM, RT, 1 h, 99%. b, TFDO (1.0 equiv.), DCM, —20°C,
portion-wise addition of TFDO over 30 min, then additional 30 min, 82%.
¢, NaOMe (5.0 equiv.), MeOH, 70 °C, 2 h, 95%. d, CH;CO,Br (1.0 equiv.),
DCM, 0°C, 5 min; PhCF;, 100-W sunlamp, 10 min; Ag,CO5 (1.2 equiv.),

DCM, RT, 30 min, then aqueous acetic acid, RT, 30 min; LIOH (10 equiv.)
THF/H,0, RT, 10 min, 43% (39% recovered 15). DMAP,
4-dimethylaminopyridine; TEDO, methyl( trifluoromethyl)dioxirane;
NaOMe, sodium methoxide; THF, tetrahydrofuran. For selected physical
data for compounds 5, 6, 15 and 16, see the Supplementary Information.
Compounds 5, 6 and 15 were verified by X-ray crystallography.
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Figure 4 | Total syntheses of pygmol (7) and eudesmantetraol (8) through
site-specific C-H oxidations of 16. Reagents and conditions as follows.

a, CH;CO,Br ( 1.0 equiv.), DCM, 0°C, 5 min; PhCF;, 100-W sunlamp,

20 min; Ag,CO; (1.2 equiv.}, DCM, RT, 30 min, then aqueous acetic acid,
RT, 30 min; LIOH (10 equiv.), THF/H,0, RT, 10 min, 52% (30% recovered
16). b, TMP (2.0 equiv.), toluene, 80 “C, 12 h; NBS (2.0 equiv.), DCM, RT,
6 h, then aqueous acetic acid, RT, 30 min; LiOH (10equiv.), THF/H,0, RT,

10 min, 27% (37% recovered 16). ¢, 3 M NaOH, DMSO, 80 °C, 2 h, 90%.
d, 0.1 M H,S0,, DME/H,0, RT, 1 h, 87%. TMP, 2,2,6,6-
tetramethylpiperidine; NBS, N-bromosuccinimide; DMSO,
dimethylsulphoxide; DME, 1,2-dimethoxyethane. For selected physical data
for compounds 7, 8,19, 21, 22 and 23, see the Supplementary Information,
Compounds 19, 21 and 22 were verified by X-ray crystallography.
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Figure 5 | Pyramid diagram for the retrosynthetic planning of terpene
synthesis using a ‘two-phase’ approach. Because eudesmantetraol (8) is
the highest oxidized target, it is placed at the apex. Removal of one hydroxyl
group leads to level-3 intermediates 20 and 7 (and any synthetic equivalents
such as an alkyl bromide, for example 18 in Fig. 4). Repetition of this
transform leads to diols 5 and 6 (level 2), either of which could conceivably

access 20 or 7. Subseq deoxygenation of these level-2 intermediates
leads to three selections for level 1: 24, 4 and 25. Dihydrojunenol (4) was
chosen as the most logical starting material owing to its potential to access
both 5 and 6 without any corrective reduction steps or a difficult C-H
activation of a methylene group. [O]-state, oxidation state; SM, starting
material.

2.4 Application of Oxidations of Aliphatic C-H Bonds in the Total Synthesis of Taxol

(on the way)

Figure2 A) Taxane biosynthesis and *oxidase phase pyramid’ for the retrosynthetic planning of taxane synthesis using a two-phase approach:
B) taxane carbon and ring numbering; C) assumed oxygenation sequence of taxadiene in Nature.”> Notes: 1) This is not a comprehensive list
of all taxane oxidation patterns: 2) for clarity and discussion purposes, all side chains attached to hydroxyl groups were omitted; 3) all taxanes
in the above pyramid are found in Nature, and these natural products are indicated with isolation paper references: 4) any additional oxidations

installed onto taxadiene 24 are indicated in red.
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52 53 54 55

“igure 4 Potential cyclase phase endpoints for the two-phase synthesis of taxanes: any additional oxidations installed onto taxadiene 48 are
indicated in red.
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Scheme 4 Known oxidative transformations in taxanes; oxidations engendered by the given reaction are indicated in red.
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3 steps)
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Potential applications of C—H oxidation in the taxane framework; please see Scheme 1 for reaction labeling: projected oxidations
engendered by the given reaction are indicated in red.
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Scheme 6 Chemo-, regio-, and/or stereoselective transformations in taxanes.
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3. Conclusions and Outlook

Some of the opportunities for innovation include:

1) The development of a practical and versatile means of achieving controllable
dehydrogenation (a synthetic desaturase);

2) new methods to override inherent C-H bond reactivity without recourse to directing
groups; design and synthesis of new efficient metal complex like White's iron catalyst 4
would be of primary importance;

3) new multipurpose directing groups, which in some cases cases might be more useful than a
reagent-only approach;

4) strategic innovation in the design and execution of a highly practical (gram-scale),
minimally oxidized hydrocarbon synthesis (cyclase phase);

5) Extention of current oxidation of aliphatic C-H bonds t to construction of C-N bonds and
C-C bonds to greatly increasing the synthetic efficiency.
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