π -alkyne metal complex and vinylidene metal complex in organic synthesis

0. Introduction

Recently, electrophilic activation of alkynes through π -alkyne complex formation has been studied extensively.

ex. Au(I), Au(III), Pt(II), Ru(II), and so on.

More recently, there has been a large number of reactions involving metal vinylidenes as catalytic species.

ex. Cr^{0} , Mn^{0} , W^{0} , Ru(II), Rh(I), Fe(II), and so on.

In this literature seminar, mainly three reports will be introduced in full detail.

Contents

- 1. W(CO)₅(thf)-catalyzed generation of carbonyl ylide and tandem reaction with alkene
- 2. CpRu⁺L₃-catalyzed anti-Markovnikov hydration of terminal alkynes
- 3. Control of π -alkyne and vinylidene complex

1. W(CO)₅(thf)-catalyzed generation of carbonyl ylide and tandem reaction with alkene

^{*}generally studied reactions involving π -alkyne metal complex

For review of Pt, Au, see ; *Angew. Chem. Int. Ed.* 2007, *46*, 3410. other metals ; *J. Org. Chem.* 2007, *72*, 7817.

1st. report. (Pd) (pyrrole) Utimoto et al. *Tetrahedron Lett.* 1981, 22, 4277.

Generation and Reaction of Tungsten-Containing Carbonyl Ylides: [3 + 2]-Cycloaddition Reaction with Electron-Rich Alkenes

Iwasawa et al. JACS 2001, 123, 5814. (commun.) JACS 2005, 125, 2709. (full)

+ postulated mechanism

- + Tungsten-containing carbonyl ylide
- + Minute mechanistic consideration is presented below

+ Not only ketene acetal but also alkyl vinyl ether is applicable

+ aryl aldehyde is applicable

+ internal alkyne is applicable

Table 1.	Reaction	of Various	o-(1-Alkvnvl)phenvl	Ketones with	Electron-Rich	Alkenes ^a
rubic n	rtouotion	or various			Elood off 1 doff	/ (1100

entry	R ¹	R ²		R ³	R⁴		time	yield/%
1	<i>i</i> -Pr	Н	1 a	OC ₂ H ₅	CH ₃	5a	23 h	75
2	<i>i</i> -Pr	Н	1 a	Н	$n-C_3H_7$	5b	1 week	50
3	Me	Н	1b	OC_2H_5	CH_3	5c	4 days	84
4	Me	Н	1b	Н	$n-C_3H_7$	5d	2 days	74
5	<i>n</i> -Pr	Н	1c	OC_2H_5	CH ₃	5e	2 days	81
6	<i>n</i> -Pr	Η	1c	Η	$n-C_3H_7$	5 f	8 h	77
7^b	Η	Н	1d	Н	$n-C_3H_7$	5g	4 h	94
8	Η	Me	1 e	Η	$n-C_3H_7$	5h	16 h	69

^a 10 equiv of *n*-butyl vinyl ether and 3 equiv of 1,1-diethoxyethene were used. ^b Including an about 5% yield of an isomeric product concerning the substituent R⁴.

Not all the alkenes have a suitable carbon-hydrogen bond for tungsten-carbenoid intermediate to insert.

It is well known that metal-carbenoid can readily insert into a silicon-hydrogen bond of silanes.

+ silicon trapping of intermediate tungsten-carbenoid

Table 2. Reaction of 1d with Various Alkenes in the Presence of Silanes^a

(lan12dz basis set was used for the W atom, and the 6-31 basis sets were used for the other atoms)

*LUMO of ylide A is considerably lower than that of ylide D. (probably because of the strong electron-withdrawing nature of the tungsten carbonyl)

+ Mechanistic consideration

isolation of alkylidene complex

normal carbonyl ylide :

tungsten-containing ylide :

react with electron deficient alkene preferentially

react with electron rich alkene preferentially

Uemura et al. J. Organomet. Chem. 2002, 645, 228.

In the presence of H₂O instead of alkene, 13b was obtained probably through 11b.

3. in the absence of alkene & $\rm H_2O$

Iwasawa et al. JACS 2000, 122, 10226.

Scheme 1

2 was isolated by silica gel chromatography and characterized by ^{13}C NMR (typical carbene carbon δ = 230.9 ppm) and elemental analysis.

In the absence of alkene and H₂O, 2 was obtained probably through metalvinylidene intermediate.

+ Dynamic equilibria to account for these experimental results

- + Path (i) and (ii) would be faster than path (iii).
- + Path (i) and path (ii) would be under rapid equilibrium.
- + Therefore, in the presence of a reagent capable of trapping intermediate 11 or 7 (H_2O or alkene), the reaction proceeds through path (i) or (ii).
- + In the absence of such trapping reagents, vinylidene complex 2 would form slowly and to give 3 through an irreversible electrocyclization.

+ Observation of the tungsten-containing carbonyl ylide

1. ¹H NMR time course

* ¹⁸³W has 1/2 nuclear spin (other isotopes of tungsten have no nulear spin)

* A set of satelite peaks should be observed in ¹³C NMR spectrum at the carbon directly bonded to tungsten.

* 76.4 Hz (${}^{1}J_{C-W}$) (C1 - W) in 13 C NMR spectrum and 17.2 Hz (${}^{2}J_{C-H}$) (Ha - C1) in 1 H NMR spectrum were observed.

2. CpRu⁺L₃-catalyzed anti-Markovnikov hydration of terminal alkynes

* general features of metal vinylidene complex

Three types of reactions are commonly investigated.

review ; Chem. Asian J. 2008, 3, 164.

1. nucleophilic addition to the α -carbon atom

1st example of a metal vinylidene complex as a catalytic species

Y. Sasaki, P. H. Dixneuf J. Chem. Soc. Chem. Commun. 1986, 790.

other nucleophiles ; carboxylic acid, alcohol, epoxide, carbonyl, thiol, amine, phosphine, enolate, enamine

2. [1,2]-alkyl migration from the metal center to the α -carbon atom

alkyne dimerization

Bianchini et al. JACS 1991, 113, 5453.

For earlier work by Yamazaki, see ; J. Chem. Soc. Chem. Commun. 1976, 841.

3. Pericyclic reactions

1st example of 6π electrocyclization onto a catalytic vinylidene intermediate

6/13

Combined Effects of Metal and Ligand Capable of Accepting a Proton or Hydrogen Bond Catalyze Anti-Markovnikov Hydration of Terminal Alkynes**

Grotjahn et al. Angew. Chem. Int. Ed. 2001, 40, 3884. JACS 2004, 126, 12232. Chem. Euro. J. 2005, 11, 7146.

1st attempt \oplus Œ Ph P Ph -с≡с-н 3a R-Me Me Æ wet acetone, Me CDCI₃ Me TfO[⊖] TfO 70°C 21 23 Ru H3CCN, NCCH₂ $R = CH_3(CH_2)_3$ TfO H₃CCN \oplus Ð 2 Ph₂P 20 PPh₂ PPh₂ C≡C -н 25 Ph₂P Ph2P' 19a wet acetone, F CDCl₃ TfO[⊖] 70°C H Θ TfO 24 22 Scheme 9. Coordination chemistry and trapping of vinylidene by heterocycle.

21, 22 : The same ligand is coordinated in two different environments, one chelating, the other not.

The reaction with alkyne didn't afford aldehyde, but 23 and 24. (2D NMR and X-ray)

* sterical environment tuning

- + To hinder the direct attack of nitrogen at vinylidene carbon, bulky substituent was introduced.
- + H₂O was incorporated.
- + Two hydrogen bond

* scope and limitations

Entry	Catalyst	Alkyne substituent	Aldehyde yield [%] after reaction time			Selectivity ^[b]
		R	3 h	21 h	later [h]	
1	4	Bu	39	92	96 [36]	1000
2	4	PhCH ₂ CH ₂	40	88	92 [46]	150
3	4	$(CH_3)_3C$	3.5	21	91 ^[c]	≥ 130
4	4	Ph	9.6	20	54 ^[d]	135
5	4	Ph ^[e]	24	64	75 [42]	32
6	4	TBSO-CH ₂ ^[f]	28	91	96 [36]	≥ 200
7	4	THPO-CH ₂ ^[g]	35	83	86 [50]	\geq 400
8	4	$NC(CH_2)_3$	34	96	98 [40]	n.d. ^[h]
9	5	Bu	0.1	0.3	n.d.	n.d.
10	6	Bu	0.3	0.5	n.d.	n.d.
11	6 + 1	Bu	< 0.1	< 0.1	n.d.	n.d.
12	$6 + Et_3N$	Bu	0	0	n.d.	n.d.
13	7	Bu	0.3	1.0	1.2 ^[i]	n.d.

[a] Conditions: 0.5 mmol alkyne, 5 equiv water, 2 mol% catalyst, and $(Me_3Si)_4C$ internal standard in $[D_6]$ acetone (1 mL) heated in a sealed NMR tube in an oil bath (67 – 72 °C). Yields and products identified by ¹H and in some cases ¹³C NMR data. See Supporting Information for full details. [b] Ratio of aldehyde (value shown) to ketone (assigned value of 1). Authentic sample of ketone added at end of reaction period. See Supporting Information for full details. [c] Yield 49% after 68 h; 91% after an additional 108 h at 88–91 °C. [d] Yield 54% after three additions of 2 mol% **4** and 36–45 h heating each time. [e] Using 10 mol% catalyst with substrate concentration of 0.2 M. [f] TBS = $(CH_3)_2(tBu)Si$. [g] THP = 3,4,5,6-tetrahydropyran-2-yl. [h] n.d. = not determined. [i] After 7 d at 90 °C.

Figure 1. X-ray crystal structure of the cation of **4** (thermal ellipsoids are at 30% probability). The $CF_3SO_3^-$ counterion is not shown for clarity. Key bond lengths [Å] and angles [°]: Ru(1)-O(1) 2.164(3), Ru(1)-P(1) 2.3043(10), Ru(1)-P(2) 2.3251(10), Ru(1)-Cp(centroid) 1.836(4), N(2)-H 1.802(8), N(4)-H 1.638(6); P(1)-Ru(1)-P(2) 97.77(3), P(1)-Ru(1)-O(1) 93.30(9), P(2)-Ru(1)-O(1) 91.89(8).

entry 3, 4, 5 *tert*-Butylacetylene and phenylacetylene were applicable although sluggish reaction

entry 8

Nitrile didn't inhibit the reaction (Wakatsuki catalyst was inhibited by nitrile.)

entry 11 and 12

Proper placement of imidazole is crucial for efficient catalysis.

H₂O has to be exchanged to alkyne substrate.

(Two phosphine seemed to stay on the metal because added phosphine did not change the hydration rate)

Imidazole

- + facilitate conversion from B to C ?
- + activate H₂O ? (C to D)
- * facilitate conversion from D to E via F (proton shuttle) ?
- * stabilize the catalyst by hydrogen bonding ?

so far, not clear

*next report

* JACS 2004, *126*, 12232.

reduced hydrogen bonding to open catalytically active site for alkyne binding

entry 3, 4, 5 Phenylacetylene and electron-rich arylacetylene were applicable.

entry 6 Nitrile inhibited the reaction.

entry 10 in situ deprotection

Table 2.	Scope of Alkyne Hydr	ation ^a				
		aldehyde yields				
entry	alkyne	1 h	3 h	later (time)		
1	CH ₃ (CH ₂) ₆ C≡CH	55.0	99.9	nd		
2^b	CH ₃ (CH ₂) ₆ C≡CH	nd	30.2^{b}	98.6 (48 h)		
3	C ₆ H ₅ C≡CH	11.8	33.1	99.8 (20 h)		
4	4-MeOC ₆ H₄C≡CH	14.0	42.7	99.8 (24 h)		
5	$4-O_2NC_6H_4C\equiv CH$	0.31^{d}	nd	nd		
6	$N \equiv C(CH_2)_3 C \equiv CH$	3.6	12.0	97.8 (96 h)		
7	$HC \equiv C(CH_2)_4 C \equiv CH$	47.7^{c}	nd	71.2° (8 h)		
8	THPOCH ₂ C≡CH	26.1	76.2	98.0 (9 h)		
9	TsNHCH ₂ CH ₂ C≡CH	nd	97.0^{e}	98.1° (6 h)		
10	CH ₃ C≡CSi(CH ₃) ₃	6.7 ^f	24.3 ^f	100 ^f (66 h)		
11	(CH ₃) ₂ C(OH)C≡CH	nd	nd	80.7g (168 h)		
12	1-ethynylcyclohexene	nd	nd	41.0 ^{$g,h(168 h)$}		

^{*a*} Unless otherwise specified, using **6** (2 mol %), H₂O (5 equiv), acetone, 70 °C, initial alkyne concentration 0.50 M. ^{*b*} Room-temperature reaction with 5 mol % catalyst; 30.2% after 5.5 h. ^{*c*} Yields of dialdehyde and ynal (double and single hydration products) at 1 and 8 h = 27.9 + 19.8 and 51.6 + 19.6%, respectively. ^{*d*} In addition, 2.1% of corresponding alkane and deactivated catalyst. No further reaction seen. ^{*e*} Product formed as 1:8 mixture of aldehyde and its cyclized form (*N*-tosyl-2-hydroxypyrrolidine). ^{*f*} Product is propanal. ^{*g*} Room-temperature reaction. ^{*h*} 34.2 and 6.9% β , γ and isomerized α , β -unsaturated aldehydes, respectively.

Self-Assembled Bidentate Ligands for Ru-Catalyzed *anti*-Markovnikov Hydration of Terminal Alkynes**

Breit et al. Angew. Chem. Int. Ed. 2006, 45, 1599.

* Search for appropriate catalyst

[a] dppy: 2-diphenylphosphinopyridine, dppe: 1,2-bis(diphenylphosphino)ethane, 6-DPPon: 6-diphenylphosphino-2-pyridone, 6-DPPAP: 6-diphenylphosphino-*N*-pivaloyl-2-aminopyridine, 3-DPICon: 3-diphenylphosphinoisoquinolone. [b] Yield calculated from GC response factors relative to hexadecane internal standard. a = aldehyde, k = ketone. [c] η^1 -P, η^2 -P,N coordination of the phosphinopyridine with replacement of the acetonitrile ligand.

entry 6 and 7

Heterodimer is responsible for the result.

*characterization of catalyst 5

- + ³¹P NMR : two doublet (around 50 Hz, ²J(P-P) = 35.9 Hz)
- + ¹H NMR : substantial shift of NH signals of two ligands to lower field

+ X-ray

Figure 2. PLATON plot of **5** (H atoms bound to the carbon atoms and the PF₆⁻⁻ counterion are omitted for clarity). Selected interatomic distances [Å] and angles [°]: Ru1-P1 2.3366(7), Ru1-P2 2.3193(8), H2...N3 2.811(3), O1...H4 2.846(3); P1-Ru1-P2 98.20(3), N2-H2...N3 135.35(3), O1...H4-N4 147.50(3).

	catalyst 5, H ₂ O (5 eq.)	R ↓
R— <u>—</u>	acetone, 120 °C	∕ `н

Entry	Substrate	5[%]	<i>t</i> [h]	a/k [%] ^[a]	Yield [%] ^{اه}
1	n-C ₇ H ₁₅	2	26	> 99:1	89
2	Ph-===	2	26	> 99:1	73
3	N=-(CH ₂) ₃	10	96	> 99:1	78
4	(CH ₂) ₆	10	78	99:1 ^[c]	82
5		5	70	> 99:1	87
6		5	72	99:1	65
7	BnO	5	48	99:1	83
8	BzO	5	50	87:13	74
9	ů.	5	28	96:4	91
10 ^[d]	H H H H H	10	124	> 99:1	61

The origin of the catalytic activity remains unknown. Hydrogen bonding network incorporates H_2O so that addition proceeds readily and regioselectively ?

3. Control of π -alyne and vinylidene complex

10

10

10

^a Dilution conditions (0.01 M). ^b Dilution conditions (0.01 M) in hexane.

6

c-hexyl

Η

1g

10

10

3f: 50 (2f: 10%)^b

3g: 59 (2g: 11%)^b

2g: 74 (60:40)^a

In the case of alkyl substituted diene, small amounts of 2 were obtained even in the amine-promoted reaction.

* proposed mechanism

* deuterium⁻ and ¹³C-labeling experiments to support the proposed mechanism

without D₂O : 46% D incorporation

A to C

The presence of amine would facilitate the formation of vinylidene complex

E to F

1,2-alkyl migration aided by electron donation from nitrogen

Similar effect of amine has been suggested.

