Phosphaalkene and Phospholyl Ligands in Catalysis

"low-coordinate phosphorus derivatives"

The chemistry of low coordinate phosphorus species featuring P=C double bond rarely compare with those of classical trivalent compounds (phosphines).

recent review: Coord. Chem. Rev. 2006, 250, 627.

Contents

- 1. nature of P=C double bond (general)
- 2. phophaalkene ligand
- 3. phospholyl ligand (as phosphametallocene)

1. nature of P=C double bond (general)

- (a) phosphorus is reluctant to give sp and sp² hybridization because <u>overlap between 3s and 3p atomic orbitals is weak</u>
- large difference in spatial distribution of atomic orbitals
- (b) in molecular orbital (MO) of lone pair, contribution of 3s is large
- (c) spatial distribution of lone pair np at phosphorus
- (d) Ione pair is not the HOMO (in imine, Ione pair at nitrogen is HOMO)
- (e) similarly phosphinine & phospholide anion have lone pair at $\underline{\text{lower level}}$ than HOMO, which is $\pi\text{-system}$

(f) EN by Pauling scale: phosphorus (2.1), carbon (2.5), nitrogen (3.0)

(h) π -bond of P=C is 45 kcal/mol, whereas C=C is 65 kcal/mol

this balance make the π-system aplolar

(g) π -electronegativity of phosphorus is higher than that of carbon (experimental)

kinetic or thermodynamic stabilization is needed

(i) act as weaker σ -donor ligand than classical trivalent phosphine (η^1 coordination)

(j) electropositive character of phosphorus makes the π^* system low in energy, yielding a significant π -accepting capacity

Fig. 4. A comparison between the LUMOs of CO, HPCH $_2$ and HNCH $_2$ illustrating the π -accepting capacity of low-coordinate-based phosphorus ligands.

 π^* orbital is mainly developed on the element bounding to the metal directly (CO and HPCH₂)

proof of P=C

- (i) 31P and 13C NMR
- (ii) existence of EIZ isomers
- (iii) X-ray crystal structure

Angew. Chem., Int. Ed. Engl. 1981, 20, 731.

2. phophaalkene ligand

1,3-diphosphapropene Yoshifuji, M. et al. *Tetrahedron Lett.* 2003, 44, 8297.

$$\begin{array}{c} \text{Mes*} \\ \text{P=C} \\ \text{CH}_3 \end{array} \xrightarrow{\begin{array}{c} 1) \text{ n-BuLi} \\ 2) \text{ CIPP} \\ h_2 \end{array}} \begin{array}{c} \text{Mes*} \\ \text{P=C} \\ \text{CH}_3 \end{array} \xrightarrow{\text{isomerization}} \begin{array}{c} \text{CH}_3 \\ \text{P=C} \\ \text{CH}_3 \end{array}$$

Table 1. Sonogashira coupling reaction (Eq. (1))^a

only aryl iodide woked well 7: M = Pt

Entry	Catalyst	ArX	R	Base	Temp.	Time (h)	Yield (%)
1	6/CuI	PhI	Ph	Et ₃ N	rt	4	99]
2	6/CuI	PhI	Ph	Et ₂ NH	rt	4	49
3	6	PhI	Ph	Et ₃ N	rt	4	11
4	6/Cul	PhI	SiMe ₃	Et ₃ N	rt	4	93
5	6/CuI	2-PyBr	Ph	Et ₃ N	rt	4	4
6	6/Cul	p-O ₂ NC ₆ H ₄ Br	Ph	Et ₃ N	rt	4	g,
7	6/CuI	PhBr	Ph	Et ₃ N	Reflux	17	4

^a Reaction conditions; iodobenzene (2.0 mmol), phenylacetylene (2.0 mmol), 6 (0.050 mmol), copper(I) iodide (0.050 mmol), base (8 mL).

^b PhC=C-C=CPh was obtained in 18% isolated yield.

Low catalyst activity can be rationalized considering two factors:

- (i) phosphaalkenes are poor σ -donors but strong π -acceptor ligands
- (ii) highly electron rich metal centres are needed to promote the initial oxidative addition into Ar-Hal bond

P.N-chelate complex

Dake G. R.; Gates, D. P. et al. Organometallics 2007, 26, 6481.

Overman-Claisen rearrangement

- + starting point to examine the potential catalytic activity
- + no involvement of changes in Pd oxidation
- + not very superior to other catalyst system

entry	substrate	Rı	2b (mol %)	yield (%)
1	3aô	Me	5	91
2	3ac	Me	0	0
3	3ac	Me	5	84
4	3bc	n-Pr	5	86
5	3cc	n-Hep	5	72
6	3dc	$PhC\hat{H}_2CH_2$	5	48
7	3ec	i-Pr	5	33

a Isolated yield. Burified by distillation. Purified by column chromatography.

diphosphinidenecyclobutene

Ozawa F. and Yoshifuji M. Dalton Trans., 2006, 4987.

- (a) probably the most successful phosphaalkene ligands in catalysis
- (b) extended π -conjugate system
- (c) fairy stable toward the air and water
- (d) form novel organometallic complex

#3 routes have been developed

Reagents and conditions: (a) (1) Mes*Li, (2) LiAlH₄; (b) (1) azobis(isobutyronitrile), CCl₄ or CuCl₂, CuI, THF, (2) RC=CLi; (c) (1) n-BuLi, (2) BrCH2CH2Br, -78 °C; (d) room temperature; (e) reflux in benzene or toluene; (f) (1) Me2NH, (2) RC≡CLi, (3) HCl (anhyd.); (g) Mes*Li; (h) Zn or t-BuLi; (i) (1) n-BuLi, (2) RCHO, (3) Me₃SiCl; (j) t-BuLi; (k) (1) t-BuLi, (2) Cu₂Cl₂ or BrCH₂CH₂Br.

synthesized DPCBs

In particular, 1a-1d bearing two phenyl or p-substituted phenyl groups at the 1,2-positions have been found to exhibit high performance in catalytic systems

19

electronic features

remarkable feature of DPCB ligands is the strong π -acceptor property toward transition metals, which is derived from extremely low-lying π^* orbital over the diphosphinidenecyclobutene skeleton

comparison of ethylene ¹ H shift upon complexation	¹ H NMR of ethylene (δ)
free ethylene	5.30
common Pt(II) ethylene complex	3.7-4.5
[PtMe(CH ₂ =CH ₂)(DPCB)]OTf	5.02-5.22

- + upfield shifts of ethylene protons upon coordination are due to π -back donation from Pt
- + significantly downfield chemical shifts are a good indication of the lack of $d\pi$ electrons on Pt and hence the strong π -accepting ability of DPCB ligands

complexation (Pd)

$$\begin{array}{c} \text{Ar} \\ \text{P} \\ \text{P} \\ \text{R} \\ \text{Ar} \\ \text{(E,E)-1a-d} \\ \text{a: } \text{R} = \text{H; b: } \text{R} = \text{SiMe}_3; \text{ c: } \text{R} = \text{Ph; d: } \text{R} = \text{t-Bu.} \\ \text{Ar} = 2,4,6-\text{t-Bu}_3\text{C}_6\text{H}_2 \\ \end{array}$$

- + P1, P2, C1-C4 are on the same plane
- + Pd deviates from the plane
- + Mes* groups are perpendicular to the coordination plane
- # Sonogashira coupling Yoshifuji et al. Chem. Lett. 1995, 221.
 - the first attempt to use phosphaalkene complex in catalysis

+ DPCB ligands might be not suitable for this kind of catalysis, (including oxidative addition in the reaction pathway) as previously mentioned

conjugate addition of Cbz-NH₂ Ozawa, F.; Yoshifuji, M. et al. J. Organomet. Chem. 2007, 692, 286.

- Mes* NCMe cationic Pd **NCMe** Mes* (OTfT)2 (1 mol%) CbzNH₂ room temp., 30 min NHCbz enone/carbamate = 1/1 95% substrate reaction time product NHCbz 2 h 95% NHCbz 2 h 82% NHCbz 30 min 88% Scheme 3
- + use of DPCB-Pd complex as a strong Lewis acid
- + comparable catalytic activity to PdCl₂(MeCN)₂ or [Pd(MeCN)₄](BF₄)₂

- + Pd-catalyzed addition of amine to 1,3-diene probably involves nucleophilic attack of the amine on an (η³-allyl)Pd(II) or Pd(II)-diene complex
- $\implies \begin{array}{l} \text{use of DPCB ligands, which have strong} \\ \pi\text{-acceptor capacity, would be advantageous} \end{array}$

1

3

n-C6H13

diethylamine: 82% yield aniline: 45% yield

1,2-adduct

(80:20)

80

reactivity of 1 to amine was confirmed

cf. $[Pd(\eta^3\text{-allyl})(dppe)]OTf \ and \ [Pd(\eta^3\text{-allyl})(dppf)]OTf \ were totally unreactive toward aniline$

Table 2. Hydroamination of dienes with aniline catalyzed by 2.[a]

Entry	Diene	Time	Product(s)[b]	Yield
		[h]		[%] ^[c]
			NHPh	

			n-C ₆ H ₁₃ 1,4-adduct	
2	Ph	5	NHPh 1,2-adduct	92
	× ^		NHPh 1,4-adduct	

[a] All reactions were conducted at room temperature in toluene (2 mL) with diene (1.0 mmol), aniline (2.0 mmol), and catalyst (0.02 mmol).
 [b] The ratio of isomers was determined by ¹H NMR analysis.
 [c] Yield of isolated product.

- + diene/aniline = 1/2
- + 2 mol% of catalyst
- + when one of the termini of the diene is substituted, 1,2-addition to terminal vinyl group is preferred (entry 6 is exception?)
- + otherwise, 1,4-addition is preferred

mechanism (speculation)

generation of this species is postulated in the following study

regeneration of cat.

OH + NuH
$$\frac{\text{catalyst 1}}{\text{(+ pyridine)}}$$
 P Nu + H₂O (1)

Mes* \uparrow^+
OTf

P 1a: Y = OMe
1b: Y = H
1c: Y = CF₃
Mes* Mes* = 2,4,6-tri-t-butylphenyl

- + H₂O as leaving group (poor leaving ability)
- + most of the reports require rather severe conditions
- + most of the reports require activating agent, such as Lewis acid

* NuH = amine Table 1. Catalytic Allylation of Aniline with Allylic Alcohols^a

run	(allyl)OH	time (h) (allyl)NHPh (%	6)b	(allyl) ₂ N	Ph (%)
1	2a	2		96		3
2 ^c	2a	2	NHPh	91		8
3^d	2a	2		82		16
4	2b	6	NHPh 85 (E/Z = 7/1)	NHPh	10	4
5	2c	6	NHPh 84 (E/Z= 6/1)	NHPh	11	4
6	2d	7	C_3H_7 NHPh $(E/Z = 9/1)$	97		3
7	2e	7	C_3H_7 NHPh $(E/Z = 9/1)$	96		3
8	2f	10	PhNHPh	90.		8
96	2g	3	Ph NHPh 9	2 (98.5%	% ee) /	<1

^a Reaction conditions: 1.0 mmol (allyl)OH, 2.0 mmol PhNH₂, 0.1 mol % 1a, 1 mL of toluene, 0.25 g of MgSO₄, room temperature. ^b Monoallylation products in runs 4–7 were obtained as a mixture of stereo- and/or regioisomers, whose ratio was determined by GLC. ^c 1b was used in place of 1a. ^d 1c was used in place of 1a. ^d 1c was used in place of 1a. ^e 1a was used in 2 mol %.

- + reaction proceeded at rt with only 0.1 mol% of catalyst cf.
 using Pd(OAc)₂/4PPh₃ (1mol%) and Ti(Oi-Pr)₄ (25 mol%), reactions proceeded at 50-80 °C
- + It was found later on that MgSO₄ is not essential
- + 1a was the best catalyst

retention of the absolute stereochemistry (probably double inversion)

Table 2. Catalytic Allylation of Active Methylene Compounds^a

run	(allyl)OH	CH_2Z_2	time	(h) (allyl)CHZ ₂ (%)	(al	lyl) ₂ CZ ₂ (%)
1	2a	3a	3	COMe CO ₂ Et	92	7
2	2d	3a	10	C ₂ H ₇ CO ₂ Et	93	<1
3	2f	3a	7	Ph CO ₂ Et	85	12
4	2a	3b	12	CO,Et	92	<1
5	2a	3с	12	OEI	95	

 a Reaction conditions: 2.0 mmol (allyl)OH, 4.0 mmol CH2Z2, 2 mol % 1a, 10 mol % pyridine, 0.25 g of MgSO4, 50 °C.

+ reaction took place using active methylene compounds with 2 mol% of 1a and 10 mol% of pyridine

this hydride species is assumed to be responsible for this catalysis

+ this complex was not isolated nor detected, while Pt congener was isolated (synthesized from MePtOTf)

$$(DPCB)MePt(OTf) + HSiMe_2Ph$$
 $(DPCB)HPt(OTf)$ + dimer

- + this Pt congener has the reactivity toward allylic alcohol to give π -allyl complex
- + H shoud be very acidic, though *common* H of Pd-H is negatively charged

atoms, has considerable contribution

1,6-enyne cycloisomerization Ito, S.; Yoshifuji, M. et al. Chem. Asian J. 2006, 1, 693.

- + normally 1,6-enyne cycloisomerizations catalyzed by Au need a Ag cocatalyst to generate reactive Au intermediates (Au⁺)
- + cycloisomerization catalyzed by 9 proceeded without Ag cocatalyst
- energetically low-lying lowest LUMO of DPCB would effectively raise the Lewis acidity of the Au complex to activate the acetylene moiety

3. phospholyl ligand (phosphametallocene)

- (a) probably the most developed low-coordinate phosphorus ligand (as phosphametallocene ligand)
- (b) having similar aromaticity as cyclopentadienyl anion, but reactivity is different
- (c) η^1 vs η^5 coordination: dependent on the substituents at α -position of phosphorus
- (d) act as both good π -donor and π -acceptor ligand
- (e) currently admitted that phospholyl ligands are slightly less good π -donors than carbon analogues but usually exhibit greater π -accepting capacity
- (f) highly spherical lone pair, modest σ-donor (no complexation with BH₃)

phosphaferrocene

- + phosphaferrocenyl backbone can be exploited to devise ligands possessing a planar-chirality
- + Fu was the first to use planar-chiral phosphaferrocene in asymmetric catalysis (J. Org. Chem. 1998, 63, 4168.)

Table 1. Catalytic Asymmetric Hydrogenation in the Presence of Bisphosphine 1

	n	% ee	rotated.
 entry	R	% ee	yteld
1	Н	87	99
2	Ph	87	95
3	4-OMeC ₆ H ₄	87	96
4	$4-C1C_6H_4$	85	95
5	4-NO ₂ C ₆ H ₄	79	100
6	Me	88	96
7	Et	96	92
8	<i>I</i> -Pr	90	96

- + high catalyst loading
- + up to 96% ee

Intramolecular Kinugasa reaction Fu, G. C. et al. Angew. Chem., Int. Ed. 2003, 42, 4082. recent review: Synlett, 2007, 2321.

Table 2: Copper-catalyzed intramolecular Kinugasa reactions in the presence of planar-chiral phosphaferrocene—oxazoline ligands: Enantioselective synthesis of two new rings. [4]

Entry	Product	Ligand	ee [%]	Yield [%]
1	ArN	5a	88	74
2	Ar N	5a Me	86	60
3[6]	Ar	5a	90	46
416]	Ar N S	5 b	90	64
5 ^(b)	PH	56	85	53
6	Ar.N	5 b	91	68

[a] All data are the average of two runs. [b] The reaction was run at room

temperature.

- + catalytic enantioselective synthesis of fused β -lactams from alkynyl nitrones
- + high enantioselectivity but low-modest yield

trapping Cu enolate with E⁺ quaternary carbon center

CuBr (5%)

5a (5.5%)

Ph(Me₃SiO)C=CH₂
(2.0 equiv)

KOAc (1.0 equiv)

MeCN, RT

Ar =
$$p$$
-carboethoxyphenyl

(3)

+ Ph(TMSO)C=CH2 is used instead of amine base

RNH the proton donor &

diphosphaferrocene

not well-developed like phosphaferrocene

M di

diphosphaferrocenes logically behave as 4-electron donor ligands but tend to form polymeric materials when the metal fragment possesses two available vacant sites

synthesis of diphosphaferrocene complex Mathey, F.; Le Floch, P. et al. Organometallics, 2000, 19, 4899. New J. Chem., 2003, 27 1233.

theoretical study using DFT (Cu complex)

- + 9 orbitals mainly account for the binding of the dpf (diphosphaferrocene) ligands to the Cu
- + the orbitals which describe the lone pair at phosphorus and the π^* orbital of the phospholide ligand (mainly 3pz contribution at P) as well as the MO which describe the P-Fe bond participates significantly to the bonding between Cu and dpf ligand
- + dative bonding between Fe and Cu doesn't occur, since no empty d orbitals are available at Cu (such bonding is often seen in ferrocenyl-based complexes)
- + deviation from the ideal in-plane coordination of the lone pair at phosphorus ($\theta = 50^{\circ}$, from X-ray analysis)
- + nondirectional bonding

Suzuki coupling

aryl bromide	mol % Pd	t/h	conversion (%)	TON
4-bromoacetophenone	0.0001	1	77	770 000
4-bromoacetophenone	0.0001	20	98	980 000
3-bromothiophene	0.005	1	80	16 000
3-bromothlophene	0.005	20	96	19 200
2-bromoanisole	0.005	1	67	13 400
2-bromoanisole	0.005	20	96	19 200
bromobenzene	0.0001	1	46	460 000

 $^{\prime\prime}$ Reaction conditions: 1.0 equiv of aryl bromide, 1.5 equiv of phenylboronic acid, 2.0 equiv of K_2CO_3 . Temperature: 110 °C. TON are expressed in mol product (mol Pd) $^{-1}$.

+ 6 proved to be highly active catalyst

* Fu proposed that the bulkiness of P(t-Bu)₃ favors the formation of the <u>12-electron</u> <u>species</u> [PdP(t-Bu)₃], which can be considered as the active species in the Suzuki coupling of arylboronic acid with aryl and vinyl halides and triflates *J. Am. Chem. Soc.* **2000**, *122*, 4020.

hemilabile ligand

contribution to generation of active species?

Property of the Paris of the Control of the Paris of the Control of the Paris of the Control of