200228 山梨 文献セミナー Q&A

Q. cucurbit[7]uril の水溶性が他の cucurbit[n]uril に比べて高いのはなぜか? A. 水和時のエネルギー変化と固体の分子間相互作用の 2 点による説明が可能です。

現在単離されている CB[*n*](*n* = 5, 6, 7, 8, 10)を比べると、CB[5]と CB[7]が数十〜数 mM と高い水溶性を 示すのに対し、残りの CB[6]、CB[8]、CB[10]は 0.05 mM 以下と低い水溶性を示すことが分かっています。 分子動力学法によって解析したところ、CB[*n*]の水和時のギブス自由エネルギー変化は、*n* が大きくなる につれて大きくなり、*n* が大きいほど溶解が熱力学的に不利になることが分かりました。これは、*n* が大 きいほど水分子のネットワークを多く破壊し、溶解がエントロピー的に不利になるからだと考察されて います。また、分子内の CH…O の相互作用の違いに起因して、固体の CB[*n*]はアモルファス(*n* = 5, 7)か 結晶(*n*=6,8)のどちらかを取ることが知られていて、結晶はアモルファスよりも強い分子間相互作用を形 成します。したがって、CB[5]と CB[7]の水溶性が高く、その中でも*n* が小さい CB[7]の水溶性が最も高 くなると解釈することができます。

(Malaspina, T., et al., J. Phys. Chem. B 2016, 120, 7511.)

Q. cucurbit[6]uril と 6C とで diammonium ion 11 とのアフィニティに大きな差が出るのはなぜか? <u>A. diammonium ion 11 は CB[6]の cavity に対しては大きすぎることが原因です。</u>

6C(下図 host 6)は CB[6]に比べて、より大きいゲ スト分子に対するアフィニティが大きいことが分 かっています。これは、非環状の 6C が環状の CB[6] よりも大きな cavity を持つことに起因すると考えら れています。

ÑH₂CI

CH₂NH₃Cl

CI NH₃CI	NH₃C
\square	\square
	4

guest	${\rm host} {\bf 4}^a$	host 5	host 6	CB[6]	CB[7]
7	_	$(4.7\pm0.5) imes10^4$	$(5.0\pm0.3)\times10^4$	$(2.0\pm 0.2) imes 10^{7c}$	_
8	_	$(1.4\pm0.1) imes10^5$	$(1.6\pm0.3)\times10^6$	$(1.5\pm 0.1) imes 10^{8c}$	_
9	$(5.6\pm0.4)\times10^3$	$(1.0\pm0.2)\times10^6$	$(2.2\pm0.4)\times10^6$	$(4.5\pm 0.8)\times 10^{8b}$	$(9.0\pm 1.4)\times 10^{7b}$
				$(2.9\pm 0.2) imes 10^{8c}$	
10	_	$(1.0\pm0.1)\times10^4$	$(4.9\pm0.6)\times10^4$	$(1.9\pm 0.1) imes 10^{3b}$	$(2.1\pm 0.3) imes 10^{6b}$
11	$(1.5\pm0.1)\times10^4$	$(1.2\pm0.1)\times10^6$	$(2.2\pm0.4)\times10^7$	550 ± 30^b	$(1.8\pm0.3) imes10^{9b}$
12	_	$(2.7\pm0.4)\times10^4$	$(6.8\pm1.4) imes10^5$	$1.4 imes 10^{6d}$	$(2.3\pm0.4) imes10^{7b}$
13	_	nb^e	$(2.6\pm0.3) imes10^4$	nb	$(8.9 \pm 1.4) \times 10^{8b}$
14	_	$(1.1\pm0.2)\times10^6$	$(1.8\pm0.4)\times10^7$	_	$(4.2\pm 1.0)\times 10^{12b}$
15	_	$(6.1\pm0.9)\times10^5$	$(6.0\pm1.3)\times10^6$	-	$(2.5\pm 0.4)\times 10^{4b}$

NH₃CI

 ${}^{a}K_{a}$ values taken from ref 13a. ${}^{b}K_{a}$ values taken from ref 3b. ${}^{c}K_{a}$ values taken from ref 3d. ${}^{d}K_{a}$ values taken from ref 12b. e nb = no binding.

(Lucas, D. and Isaacs, L. Org. Lett. 2011, 13, 4112.)

O. PAINT の仕組みについて

A. 説明不足な点があったため、詳細に説明します。

通常の光学顕微鏡では、回折限界以下の距離にある 2 点を識別することができません。そこで、様々 な工夫を施すことにより、回折限界を超えた解像度を持 つ超解像顕微鏡が開発されています。今回紹介した PAINT では、付いたり離れたりする蛍光分子を用いてい ます。この蛍光分子はターゲット分子との結合に関係な く蛍光を放出しますが、ターゲット分子に付いている時 間と露光時間が同程度であれば、付いている分子のみが 強く検出されます。一部のターゲット分子をまばらに観 測することになるため、ターゲット分子全体を同時に検 出した際には重なる点であっても、区別することができ ます。これを繰り返し、得られた像を合計することで、 回折限界を超えた解像度を持つ顕微鏡像が得られます。

(https://www.nobelprize.org/prizes/chemistry/2014/press-release/)

Q. cucurbit[n]urilの細胞内での応用には他にどのようなものがあるか?

A. ドラッグデリバリーへの応用などが挙げられます。

CB[n]とゲスト分子の結合を細胞内で形成させる例は、 調べた限りでは今回紹介したイメージングしかありませ んでした。結合は細胞外で形成させているものの、のちに 細胞へ応用している例は複数存在します。特に多くの応用 が報告されている例として、CBInlと複合体を形成させる ことで薬剤分子を細胞内へ輸送し、細胞内で放出するとい うドラッグデリバリーシステムへの応用が挙げられます。

(Das, D., et al. Front. Chem. 2019, 7, 1.)

O. アゾベンゼンなどを利用した光スイッチへの応用例はあるか?

A. 複数の報告例があります。

シクロデキストリンと同様に、cucurbit[n]uril にも、アゾベンゼンなどを利用した光スイッチへの応用 例が複数報告されています。下図の例では、2つのアゾベンゼン部位を持つ bipyridinium と cucurbit[7]uril とのホストゲスト相互作用を利用し、光によって構成成分の比を切り替えることができる擬ロタキサン を形成しています。

(Baroncini, M., et al. Chem. - A Eur. J. 2014, 20, 10737.)

Q. cucurbit[n]urilの生体内での応用例としてはどのようなものがあるか?

A. 生体内イメージングへの応用などが報告されています。

CB[7]を繋いだ抗体と、放射/蛍光標識された adamantane 誘導体を用いることで、生体内イメージング を可能にした例が報告されています。この方法により、素早い結合形成が可能であるという非共有結合 的な戦略のメリットを残しつつ、biotin-streptavidin の系で発生する内在性ビオチンによる偽陽性や streptavidin の免疫原性の問題を解消することが期待されます。

(Strebl, M. G., et al. Mol. Imaging 2018, 17, 1.)

(Li, M., et al. ACS Appl. Mater. Interfaces 2019, 11, 43920.)