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Background of radical-radical cross coupling
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Radical-radical coupling
poor chemoselectivity

= Efficient and straightforward approach

= However, because the activation barrier for radical-
radical coupling is very low, the reaction occurs
extremely fast and is often diffusion-controlled.

— Once two radicals meet, they react almost
instantaneously.

» Various strategies need to be considered
to control cross radical-radical coupling
reactions.



Conventional Strategies to control radical-radical cross coupling

1. Transition-Metal Catalysis
(a) Trapping with a transition-metal and subsequent cross-coupling Transient radicals form complexes with a transition
metal, generating longer-lived organometallic
intermediates.

R+ [M] === R—[M™] —=, R=R

catalytically generated

SONgErINEa CompeX * These intermediates then undergo C-C bond

formation via reductive elimination in a
radical/transition-metal crossover process.

» These methods do not achieve genuine radical-
radical coupling.

» Metal-free strategies for radical-radical cross-
coupling are being explored.
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Reactivity of Alkenyloxy Radicals and Challenges

Scheme 1. Oxygen-Centered Radicals and Enol Ester

Synthesis

a) Typical intermediates attached to a n-system
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rare

= Limited Use of Alkenyloxy Radicals due to:
o High oxidation power
o Strong electrophilicity

» Most studies remain spectroscopic mechanistic, not
synthetic.

= O-radicals generally undergo a few elementary
reactions:

o Hydrogen atom transfer (HAT) — dominant pathway

o B-fragmentation

o Addition to unsaturated bonds

o Radical-radical coupling (mostly limited to N-O bond)

» Cross-coupling involving O radicals (O-O or O-C/0O-X)
is extremely challenging.
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Strategies to control cross radical-radical coupling -PRE-
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Figure 2. Simulation of dynamic systems obeying the principle of the
PRE. Both radicals PR and TR are continuously generated at equal
rates (k=107 s™"). The rate constant for the self-reaction of the
persistent radical was varied (2k,pz=0, 10%, 10° 107, and 10°m~'s™").

Angew. Chem. Int. Ed. 2020, 59, 74-108

= Radicals are categorized by lifetime:

= Transient radicals (short-lived)
= Persistent radicals (long-lived)

= Selective Cross-Coupling is governed by the Persistent Radical
Effect (PRE)

= Persistent radical + transient radical
= Both generated at similar rates

> Lifetime differences lead to large concentration differences
> high cross-selectivity

= Current Limitation
= Very few persistent radicals are known, while transient radicals are abundant.
= - This severely limits the synthetic scope of radical/radical cross-coupling.
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Strategies to generate ”"Persistent Radical” -NHC Catalysis-

/\
|§/N—R

NHC (N-Heterocyclic Carbene)

Scheme 3. NHC-Derived Ketyl Radicals Generated via
Single-Electron Oxidation of Breslow-Type Intermediates
with Oxidizing C-Radical Precursors
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£ 1.7V vs SCE persistent radical
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single-electron
reduction
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=
transient radical

J. Am. Chem. Soc. 2019, 141, 2, 1109-1117

U Redox Properties

Breslow intermediates and their enolates have
relatively low oxidation potentials

> Can be readily converted to Breslow Intermediate
Radicals (BIRs) via easy SET process

> They function as a new class of persistent radicals
= Their persistence arises from the bulky NHC
framework and stabilizing ketyl electronic
structure.
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NHC & Breslow Intermediate: Gateway to Radical Reactions
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radical-radical cross coupling
rare
c) This work: generation of alkenyloxy radical and its radical-radical coupling
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BIR
(persistent radicals)

+ NHC + —_——

key intermediate

A enol esters
L o
@ - iy ™ phenyl esters
oxidant vinyloxy radicals
or or

O radical precursor phenoxyl radicals

= Breslow Intermediate Radicals (BIRs)

readily couple with various radicals such

as carbon- and sulfur-centered radicals.

= > |f BIR can capture reactive oxygen

cross coupling i o—(/"ﬂ:> radicals, then alkenyloxy radicals might

also be engaged in controlled radical

coupling.

Org. Lett. 2024, 26, 2456-2461

9



Screening of NHC catalysts

Table 1. Screening the Reaction Conditions”

o

©:«‘<N-0{:> + (Y SH

NHC Catalyst (10% mol)

o s 9
Solvent, N,, Temperature [
C

Base (20% mol)

o Cl |
1a 2a 3a
NHC ly T
—( iPr. —( M Q
t(,@ Sohgs o A P '
ClO; jpy CIO; e Me  ClO; i CI07 ppy
N1 N2 N T Ne
entry NHC catalyst base solvents yield (3a)”
1 N1 Cs,CO,  DMF 6%"
2 N1 Cs,CO;  DMF 12%
3 N2, N3 Cs,CO;  DMF NR
4 N4 Cs,CO;  DMF 26%
5 N4 Na,CO; DMF 32%
6 N4 L,CO;  DMF 52%
7 N4 Li,CO;  DMSO 29%
8 N4 Li,CO, N-methyl-2-pyrrolidone 55%
9 N4 Liy,CO;  DMA 60%
10 N4 Li,CO; DMA 75%%¢

“Unless otherwise noted, the reaction was carried out with 1a (0.2
mmol), 2a (0.3 mmol), NHC catalyst (0.02 mmol), and base (0.04
mmol) in solvent (0.4 de) at 60 °C for 8 h. YIsolated yields. °N-
Oxysuccinimide was used. “A 1.0 mL amount of solvent (0.2 M) was
used. “Temperature was 100 °C instead of 60 °C. For more details
about the experimental procedures, see the Supporting Information.

= Background: Previous study confirmed sulfur radical generation

under NHC catalysis > used as basis for reaction optimization

= Substrate: N-(cyclohexoxy)succinimide (1a)

= |nitial conditions (entry1) > enol ester 3a obtained in 6% yield

= |ssue: Low substrate oxidation potential, significant unreacted starting

material

» The steric and electronic properties of the NHC catalyst had a

significant influence on the reactivity,

Optimal reaction conditions:
Substrate: N-(cyclohexoxy)succinimide
Catalyst: NHC precursor N4

Base: Li,CO;4

Solvent: DMA, 0.2 M

Temperature: 100 °C
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Substrate scope of enol ester synthesizing

—Aldehyde -

; EN E N4 (10% mol)
0|o4 Pr

Li,CO3 (20% mol)

(o]
0%0
DMA (0.2M), N5, 100 °C

Scope of Aromatic Aldehydes

=4 , X = 4-Ethynyl,
Gl O 3¢, X =4 Brif6; (77%, 4 mmok-scale)
: 3d, X = 4-CF,, 72%
P 3 3i, X = 3-Br, 70%
e, X =4-CO,Me, 81% 3, X =3 (Pyrldln -2-y1), 55%
s o b 3fX 4H43A) 3k, X = 2-F,
"SR T e dhe
3h, CCDC 2293504 31,48% 3m 59%
q Q
Q Q o
$
3n,39% 30,46% 3p,63%

Para-EWGs: moderate to high yield (3b-3f)
Para-EDGs: lower yield (3g)
= Electron-rich aldehydes form Breslow intermediates less
efficiently

Compatible with sensitive unsaturated groups (alkynyl) (3h)
= Product structures confirmed by X-ray crystallography

Meta/ortho-substituted: moderate to high yields (3i-3k)
Polysubstituted and naphthalene product: moderate (31-3m)

Heteroaromatic systems (furan, thiophene, benzothiophene):
well tolerated (3n-3p)

a,B-unsaturated and alkyl aldehydes: unsuccessful
= - Due to inefficient Breslow intermediate formation

11
Org. Lett. 2024, 26, 2456-2461



Substrate scope of enol ester synthesizing - Alkoxy radical —

Q, v' High functional group tolerance

s\?'}lpb N4 (10% mol)
8 o Clo; pr .
@N_o . H Li,CO5 (20% mol) oj\f’ = Cyclopentenoxy, linear, terminal, and branched
Y f{ DMA (0.2M), N,, 100 °C

olefins reacted smoothly (4a-4d)

Scope of Alkoxy radical Source

°O/Q °OM °°/\D °° " v" Allowing the late-stage functionalization of
CIQX C,/©)k C,Q)L uO)L ht natural products or small molecule drugs.

4a,46% 4b,80% 4¢,63% 4d,49%
70% (2 mmol-scale)

Late-stage Modification A
= Natural product or drug-derived aldehydes

C(oZK@AZJ\D@or@jE’)k ! O OO é compatible (L-proline, L-menthol, adapalene,

dehydrocholesterol, probenecid) (5a-5e€)

5a,73% 5b,45% §¢,36%

@070(@( ‘0 60’(@”0*@%«\/ v" Scalable to gram amounts (1-4 mmol) (3h, 4d,
H . o b 58)

5d,54% 5e,68%
X 54% (1 mmol-scale)
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Substrate scope of phenyl ester synthesizing. — Aldehyde —

v Broad compatibility with aromatic aldehydes

S\;N’P' N4 (10% mol) = (para-, meta-, and ortho-substituted: good to
0 ClO; jpr high yields)
qun_o ” O)OLH CezCO05 (20% mal) oio v' In contrast to the enol ester synthesis,
Y DMF(0.5M), Nz, 60 °C electron-rich aryl aldehydes - high yield
Scope of Aldehydes

> Because the radical-radical coupling between

6a, X = 4-Cl, 85% 6g, X = 4-CO,Me, 57% o /@
o 6b, X = 4-F, 85% 6h, X = 4-Ethynyl, 68% H 1
" o/© foX=4BrE0%: & oom ° the Breslow intermediate and the phenoxy
XT Sox o Mo o hX=2F 30% radical is the rate-determining step
! 2 6k, X = 3,4-Dichloro, 41% 6m, 91%

=4 10y
6f, X =4-OMe, 92% ¢ "y _ 34,5 Trimethoxy, 84%

0 2 0 0 v' Compatible with more complex aromatic
x o/© =3 OQ X o/© OO . g
“d s systems
- & — I = Polysubstituted benzaldehydes (6k-61)
= Heteroaromatic aldehydes (6m-60)

v a,B-unsaturated and aliphatic aldehydes

tolerated (6p, 69)
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Substrate scope of phenyl ester synthesizing - Phenoxy radical -

S—/N’P' NA (10% mol) v Broad compatibility of phenoxy radicals
cnoz\;:b With different steric and electronic properties

0
o % o
©f<\<N—O . O)LH Cs,CO0; (20% mol) o)ko @
) —.

DMF(0.5M), N, 60 °C

= All substrates provided the corresponding
phenyl esters in moderate to high yields (7a-7f)

Scope of Phenoxy radical Source

(o]
o AN TaX=AE,b% - O " v Successful late-stage modification
@/mo/@—";:&:::gu:zﬁ% /©)ko O PhO ol = Aldehydes derived from L-proline, probenecid,
|

7d, X = 3-Me, 82% .
- Zo. X oM T4%. B - W s dihydrocholesterol, and L-menthol were all

tolerated (8a-8d)
» Limitation

y 0 = |ntroduction of alkoxy groups was
Phovﬂ\ &S PhO)KQ\ ‘0 - unsuccessful
o i

> Likely due to the instability of the corresponding
alkoxy radicals.

Late-stage Modification
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1,3- Diketone synthesis

= |nvestigation of alkoxy radical properties
ler N4 (10% mol)
5\4’;‘ o MO| .
g cio, ,,,,b = Carbon-centered radicals are more stable than
(o] .
@[é"‘%_}) . )OJ\ Li,CO3 (20% mol) Ar)io a[koxy radicals
T il DESAIDZND) N2:80°G o R - Subsequent reactions more favorable
’adi°a"""”°a'°°;"""g NRo * By tuning substituents on the radicals, the
O resonance 0 No electron density can be controlled to selectively
- . A .
{O\%R %ﬁLR} Es)i capture C-centered (ll) or O-centered radicals (l).

= Higher conjugation at the a-carbon increases

o o O o O .
)jj i )i)g@ )J\Hg@ % electron density on carbon.
Ph A, Ph Ph Ph
S cl cl OMe

9a, 49% 9b, 59% 9c, 55% 9d, 21% = 1,3-Diketone synthesis
o 0 2 ’ . . .
o o " i o o o%@zm = |ntroduction of highly conjugated groups (e.g.,
Ph% )5)\@ ph%o # /f phenyl) on olefins promotes carbon radical
s Me . coupling with aldehydes (9a, 49%).
9e, 72% 9of, 35% 9g, 67% 9h, 53%

v High chemoselectivity: no side reaction with O

radicals 15
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Mechanism studies

a) Control experiments

{,\\/O\N,’ . i}
o 0N Il
T o = cl

1aorih
0.2 mmol, 1.0 equiv

o N4 (10 mol %)

2a
0.3 mmol, 1.5 equiv

Li,CO3 (20 mol %)

DMA (0.2 M), [ ]
Ny, 600r100°C, 12h C7

c) Radical capture experiment :

b) Radical quenching experiment:

o]
~ L
o

2a
0.3 mmol, 1.5 equiv

1h
0.2 mmol, 1.0 equiv

N4 (10 mol %)

o
©/0\N, { Cs5C03 (20 mol %) [
/ O}*-/ Y omFesM) g

==/ under air, 60 °C, 12h

1h
0.2 mmol, 1.0 equiv

2a
0.3 mmol, 1.5 equiv

o N P o o DBU (1.5 equi o
N A N O‘N" . ] (1.5 equiv) Oy
0 ! | Et0” Y~ TOEt | P
' Z O)‘* H DMF (0.5 M)
: N,, 60 °C, 8h
3aoréa H 1 1 henol
: a a phenol
no N5, NR " N B
1o LiCO3, NR 0.2 mmol, 1.0 equiv 0.3 mmol, 1.5 equiv 29% yield
o o -H* | base
: P!
o s SET | EtO 3 OEt o o
k ™ J : JIi Il
7o E0” [ TOEt
o e} H
? R (\/
EtO OEt NF
3a
notdetected ~  t--o-eooeeeoe oo
N4 (10 mol %) o
Cs,C0;3 (20 mol %) o) =
LI N
DMF (0.5 M) Ph” O ). ]
Ny, 60 °C, 12h cr =
TEMPO not detected 10a, 23% yield

0.4 mmol, 2.0 equiv

Control experiment (a)
= No NHC or no base » No product
> Indicates the NHC catalyst played a key role

Radical quenching experiment (b)
= No product was observed when TEMPO or
O, was added
= Adduct of the benzoyl radical with TEMPO
was detected
> Suggest a radical pathway

Radical capture experiment (c)
= malonate anion reduces 1a > phenoxy
radical » HAT > phenol
> Direct Evidence for O-Radical Formation

16
Org. Lett. 2024, 26, 2456-2461



Proposed mechanism

1. Aldehyde 2 + NHC - Breslow intermediate INT1 > (base)

~._O.__R! > INT2
(T Y w3
(o] — e (’A‘j R1
o s UL 2. INT2> SET > INT3 + INT4
2
)/ A ? 3. INT3 - fragmentation > INT5 + phthalimide anion
OH _R1 s
(o]
R1&L} /—c?_S\N] o 4. Substituent effects: INT5 (C-radical) © INT6 (O-radical)
- R'O Ar
INT 1 INT7 P N+
base NHe l r) 5. INT4+ INTS/INT6 > coupling
catalytic cycle T UnTs ©Elé > ester/ 1,3-diketone + NHC regeneration
base-HJr / Q/u
Ar

o
R J\(j) ] Cross INT6
N E >\é coupling

Ar
INT 2 \ / NT4 path A
0 SET o

/ \ ; c)@
e e SR @
o « N S
) o}
1

-
base-H

o~__ 7o

(o] (\ /)
INT3 INT 5
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Short summary

c) This work: generation of alkenyloxy radical and its radical-radical coupling

o

i ™
o 7] -7
" Ar Y
BIR
(persistent radicals)

cross coupling

+ NHC + ——

0
s
0—(\/ :>
key intermediate o

AT

r enol esters
L or

@ - ~7 0y phenyl esters

oxidant vinyloxy radicals
or or
O radical precursor phenoxyl radicals

U First NHC-catalyzed C-0 radical-radical coupling
developed

U Applicable to enol/phenol esters and 1,3-diketones

U High functional group tolerance; late-stage
functionalization feasible

U Scalable and efficient synthesis

U Potential for complex molecule synthesis and drug
modification

Org. Lett. 2024, 26, 2456-2461
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Asymmetric bifunctional catalyst

Metal 1

-

Metal 2

chiral
backbone

(a) bifunctional chiral catalyst

(A) Previous Works: asymmetric photocatalysis by non-redox metal complexes
Ro~ < R
N oM
@) d
* enantioselective radical couplin
| seT Ping
“““ L A—R
8 i enantioenriched
<‘} product
R®— L

o
W

enantioselective radical addition

Features

outer-sphere electron-transfer & outer-sphere stereocontrol process

+ precious metals + high-valent Lewis acids

Asymmetric bifunctional catalysis

= Asingle catalyst simultaneously generates
radicals and controls stereochemistry.

= Can be applied in photochemical reactions under
mild, environmentally friendly conditions.

= No additional photosensitizers are required.

20
J. Am. Chem. Soc. 2025, 147, 25264-25272



Two Conventional Strategies in Asymmetric Radical Reactions

Metal 1

® Redox-active metals (inner-sphere control)
ekl ) * Sequential oxidative addition with two different free
radicals forms high-valent metal complexes.
Metal 2
(a) bifunctional chiral catalyst * Radicals react while bound to the metal (inner-

sphere mechanism), allowing better
stereochemical control.

= Challenges
- Need redox-active metals

21



Two Conventional Strategies in Asymmetric Radical Reactions

(A) Previous Works: asymmetric photocatalysis by non-redox metal complexes

OV

* \) enantioselective radical couplin

| seT p'x_'
.~‘M

A.a T\

enantioselective radical addition

A—R

enantioenriched
< ~ product

Features

outer-sphere electron-transfer & outer-sphere stereocontrol process

+ precious metals + high-valent Lewis acids

a) Iridium(l)-mediated dical-radical pling of tri ketones with tertiary amines (Meggers' work)
T =
tBu s
4
N stereoselective radical HO, SFs]
&V)Lcr Ph,NI,N SET radical cross-coupling \N\ N
—» —_—
Ir— <—N
e ‘K) WP \HOQ L
N Fs
/ G
b) Lanthanide metal diated enanti ive radical-radical pling of isatins with toluene derivatives or sulfides (Jiang's and Feng's works)
o 9""“ s .‘s/&\ stereoselective radical- HQ s’.
Ln* [ o g__l_", radical cross-coupling 5
0 —— 0 | — 997
N N SET/PT O =3 N
: k N S0,A
50A B SOAr SOAr ?

. n Ar
.\8,/\7 y elective radical Ho
e~ X e 2 stereosel cal- e
k. radical cross-coupllng
g% | o gO~Ln | ————————> s
SETIPT or HAT ‘\4 — ‘fr):
2 N > N $0,Ar

SOAr SOAr

@ Non-redox metals (outer-sphere control)

. The radical acceptor coordinates to the chiral

non-redox metal, forming a reactive
intermediate.

Photoexcitation promotes the complex to an
electronically excited state and undergoes
outer-sphere SET with the radical precursor,

generating the radical species.
* Radical generation doesn’t rely on oxidative

addition

Prochiral radical intermediates and transient
radicals then participate in enantioselective
radical-radical cross-coupling.

22
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Two Conventional Strategies in Asymmetric Radical Reactions

(A) Previous Works: asymmetric photocatalysis by non-redox metal complexes

Ro~ <M\

@ QA _\_V
G| ser/ cremeseeete rdeslcouping _ @ Non-redox metals (outer-sphere control)

A T\ /_:nantioenriChed
<"\ product
Ro—~ .M * Challenges

enantioselective radical addition

Features

- Cross-selectivity and enantioselectivity is hard to
outer-sphere electron-transfer & outer-sphere stereocontrol process . . K .
+ precious metals + high-valent Lewis acids maintain because one radical is free in solution and
ketones with tertiary amines (Meggers' work) n Ot m eta l- b O u n d °

o5 17 " - Reactivity imbalance between the two radicals
q stereoselective radical- HOEFs 4

¢ E/{ m | O | EEER a5 often leads to side reactions and diminished
e | G?@ | &R ) selectivity.

tBu-

a) Iridium(Ill)-mediated

b) Lanthanide metal diated enanti dical-radical pling of isatins with toluene derivatives or sulfides (Jiang's and Feng's works)
7 ?——L" s LN stereoselective radical- Hg 5/.
Ln* [ 2 B radical cross-coupling
0 ———> 0 | — 9O o
N N SET/IPT O = N
\
50,Ar s S0,Ar N 50,A

SETIPT or HAT 3 Lo gomLe
Crb=r Cré=o

SOAr SO,Ar

23
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Two Conventional Strategies in Asymmetric Radical Reactions

® Inner-sphere @ Outer-sphere
control control

Metal

Radical
generation

Challenges

» Approaches that simultaneously

Redox-active Non-redox metal ] i )
metal achieve radical generation and
Atmetalcenter  SET promoted by asymmetric induction through a Lewis
Oxidative addition photoexcitation acid-mediated inner-sphere
Need redox-active Not excellent mechanism remain underdeveloped.
metal cross- and enantio-

selectivity
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New enantioconvergent photocatalysis strategy

(B) Our Design: enantioconvergent photocatalysis by Lewis acid complexes ® Dual Coordination Of intermediates tO a Chiral
Lewis acid forms ordered charge-transfer (CT)

X ~
N N
bb \') complexes.
(A o b
CT complex enantioconvergent enan:%%r:]rclghed e U h i i h CT l
radical coupling pon photoexcitation, these CT complexes
undergo charge transfer, generating Lewis acid—
supported radical species.

Challenges

inner-sphere charge-transfer & inner-sphere stereocontrol process

= formation of ordered charge-transfer complexes d AS long as these radicals remain bound to the
chiral catalyst, they can participate in

= enantioselective control of two different radicals

enantioconvergent radical-radical cross-coupling
(RCC)

25
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Enantioconvergent a-Amination of B-Keto esters

§ i o § O:NHPG * Optically active amino acids are widespread in
R2y P 1 R2y . /~cor natural products and pharmaceuticals.
n OR " * - Exhibitimportant biological and medicinal
a-Amination of B-Keto esters ..
activity
 Enantioselective a-amination of B-ketoesters

provides efficient access to fully substituted,
optically active B-keto amino acids.

* Challenge: Electronic mismatch between a-
carbonyl and amine makes stereocontrol difficult.

26
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Inspiration for the new strategy

? ? i OH
Bu
in b 4a O
HFIP 87%, 93% ee

40 more examples
ACS Catal. 2023, 13, 11, 7538-7543

Visible Light-Promoted Enantioselective Aerobic Hydroxylation of B-Ketocarbonyls
by Chiral Primary Amine Catalysis

The new strategy was inspired by:

30 NG 32 7

Org. Chem. Front. 2023, 10, 2563-2580.

Generic catalytic cycle for photoredox activation of N-aminopyridinium salts
proceeds through the generation and reaction chemistry of N-centered radicals

1. enantioselective photocatalysis of B-ketoesters
2. N-centered radical generation from N-protected iminopyridinium

ylides.

27
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New enantioconvergent photocatalysis strategy

(C) This Work: magnesium-mediated asymmetric radical-based a-amidation of B-keto esters

photoinduced enantioconvergent radical-radical cross-coupling strategy

Lewis acid-supported N-centered radical

Mgl > - 7 o
@ N @ Py .
P \ /O [1] \ 7 e) N 2 6N .‘NHPG
+ E— RZ*[: : Z+ I —CT—> R 0 “\Mﬁs — > R T‘\\:: | COR!
o NP> 1 v
. o n RN ao? n R 3 (30 examples)
o N up to 79% yield & 94% ee
R - - charge-transfer complex I I
~ n
2

chiral catalyst-bound radical intermediate

inner-sphere mode single Mg catalysis:

high selectivity

Dual coordination via inner-sphere mechanism

B-ketoester enolate and ylides coordinate to chiral Mg/ligand complex

Form a prochiral quaternary charge-transfer complex (CT complex I)
Photoexcitation for radical generation

* CT complex undergoes charge separation

Produces Lewis acid-supported N-centered radicals and catalyst-bound radical intermediates

AN

Radical-radical cross-coupling forms chiral a-tertiary amines efficiently
Minimizes side reactions and racemization

28
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Optimization of Reaction Conditions

Table 1. Optimization of Reaction Conditions”

.- 0 o . P * Initial conditions (Sc(OTf); + L1):
Cye, @[‘H o s @ﬁaﬁ“; 55% yield, 5% ee
1a

Acetone, Ar
2a: R=Me 18 W blue LEDs, r.t., 48 h 3aa: R=Me
2b: R="Ad 3ab: R="Ad

DU X o « Using Mg(OT¥), improved to 45%
8‘%% @%@ yield, 52% ee (entry 4)

L1 ' 2b

eatry 2 — sield (3%)" oo (%) * The nature of the anion had a

: 2 5e(0T), 5 s significant impact on the

2 a La(OTf), -1 . o g

; - o, : o enantioselectivity (entry 6,7)

4 2a Mg(OTf), 45 52

57 2a Mg(OTf), 60 58

6% 2a Mg(OTf), 76 70

. = e o . . * Optimization of substrate ratio,

- 2 Mg(CIO,), 6H,0 70 88 concentration, and temperature: 3ab

104/

e iﬁ oy o . 70% yield, 90% (entry 10)
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Control experiment

Table S8. Control experiments

* Confirmed reactionis light- and Lewis
acid-dependent

No product in dark

[¢]

Mg(ClO,)2#6H,0 (20 mol %)
L1 (30 mol %) “NHBz
O'Ad Acetone (4 mL), Ar, CO,'Ad

18W Blue LEDs, 40 °C, 48 h 3ab

Ent Light S Mg(ClO4)2¢ 6H20 L1 Light Yield (%)*? (%)* 0 0 0 . .

il St S R © Omission of either Lewis acid or L1
! 18 W blue LEDs Y oA 70 %0 resulted in a sluggish reaction with
2 18 W blue LEDs J X o 59 NA. no enantioinduction.

3 18 W blue LEDs X V N 9 N.A.

4 18 W blue LEDs X X v 35 N.A.

5 18 W blue LEDs v v X 0 N.A. . .
> Indicate that the asymmetric

6 370 nm v v v 0 N.A. N .
transformation proceeds via a

7 390 nm v v v 0 N.A.

photochemical mechanism facilitated by

“Reaction condition: 1a (19.8 mg, 0.1 mmol), 2b (46.6 mg, 0.15 mmol), Mg(ClO4)2¢ 6H20 (6.6 mg, 20 mol%), L1 th ec h| ral magnes | um (I I) com p leX

(11.8 mg, 30 mol%) in acetone (4 mL) at 40 °C under irradiation of 18 W blue LEDs for 48 h. “Isolated yield. ‘ee
was determined by chiral HPLC analysis. N.A. = not available.

As shown in Table S8, light and chiral magnesium (II) complex were necessary.
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Substrate Scope

Scheme 1. Substrate Scope of the Enantioconvergent RCC Reactions™”
R P o Ma(CI0g)76H;0 (20 moi%) P
i N” "PG . R 67N L1 (30 mol%) 2 67N NHPG
i i
Z [P (R Acetone (4.0 mL), Ar [ 4 COR!
1 2 18 W blue LEDs, 40 °C, 48-72 h 3
Scope for g-Keto Esters
o o
R
NHBz \NHBz NHBz Veo 2
CO,'Ad CO,"'Ad CO,'Ad © NHBz
® Sco,'Ad
3ab: R=H, 70%, 90% ee 3ae: R=5-Me, 68%, 90% ee MeO’ 2
3ac®: R=6-OMe, 61%, 86% ee 3af : R=5-F, 65%, 88% ee o 0 ono 33K, 65%. 90% ee
3ad®: R=6-Br, 41%, 81% ee 3ag°: R=5-C, 62%, 86% ee Z:fj ;:2'2“’1;:/2 {.;63% e R
3ah: R=5-Br, 41%, 84% ee 1 R=4-8r, 59%, 0% ee
aliphatic B-keto ester B-keto amide acyclic ﬁ -keto ester
NHBZ CHOBZ‘Ad \NHB: QNHBz NHB QNHB2
coz‘Ad 2 z 1 z O, 'Ad
CO,'Ad €Oz Ad com—u Bu 2
3al, 50%, 74% ee 3am, 32%, 86% ee 3an, 20%, 90% ee  3ao, 35%, 73% ee 3ap, 72%, 87% ee 3aq’, 49%, 94% ee

Scope for Iminopyridinium Ylides

3bb: R=4-Me, 52%, 91% ee

o g
3bc: R=4-OFt, 53%, 92% ee ;
1 R o ’ .
@é(coz A 3bd: R=4-F, 65%, 87% ee
N 3be: R=4-1, 76%, 78% ee B8
o

o
Oz‘Ad C[g/coz‘/\d
\',\. H'NYQ

3bf : R=4-CF3, 61%, 77% ee o F

3bg: R=4-Ph. 63%, 90% ee X-Ray of 3bc 3bh: R=3-F, 52%, 79% ee 3bj, 79%, 83% ee

CCDC 2414795 3bi : R=3-Cl, 66%, 80% ee
[} [o]
H'Np/ H'N
o F o

3bk, 60%, 76% ee 3bl, 60%, 86% ee 3bm, 35%, 83% ee 3bn, 52%, 81% ee 3bo, 48%, 67% ee

N-protected ylides with Ts and Troc

co2 Ad : /jcoz‘Ad
\“/(> HN\ (:é\NHTroc

'CO,'Ad

v’ Broad range of B-keto esters

* (aromatic, aliphatic, cyclic, acyclic) reacted
smoothly, giving 73-94% ee

* Changesinthe electronic properties of the aryl
ring did not hinder the reaction

v/ Various iminopyridinium ylides tolerated
(EDGs and EWGs)
* With EDGs (F, I, CF;) or phenyl (1d-1g)

> Good enantioselectivity (77-90% ee) with slightly
reduced yields

* Compatible with other protecting groups
(sulfonamide, carbamate)

* Absolute configuration confirmed by X-ray
crystallography (3bc)
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Mechanism Studies

(A) Radical inhibition experiment
o

©:‘§<0021Ad v Involvement of a-carbonyl radicals
stanaart ? . . . oy . .
@Eg_‘{ co'ndﬁ.o:s sa Mes N Me * Confirmed by TEMPO inhibition and detection of the
Sk TEMPO not obaserved * MeUMe
(3.0 equiv) TEMPO st TEMPO adduct (A)
[M+H]*: 466.2952
Found: 466.2049 v' Formation of N-centered radicals, not nitrene anions
(B) Radical trapping experiment X A .
PhT\[C’)_ * Supported by radical trapping with 1,1-
o Ph

Vi .
N
@ ©§—(01Ad + Ph oh _standard conditions _ @é\gg?’id + 4, 19% dlphenYlethylene (B)

(1.5 equiv) 3ab, 18%, 90% ee  [M+H]": 300.1383

Found: 300.1381 = Experiments using compound 5 show competitive
(C) Control experiments pathways (C, 1 _2):
H .
1 ~i-V8z + 2p standard conditions _ _— = Quter-sphere stereocontrol by chiral Mg-enolate
' 2 Tfo Trace
5 complexes
H - % . .
) @G'MBZ o i (8 () - » Nonselective background reactions
A Tio. 39%, 59% ee
5 > Highlights the necessity of an inner-sphere mechanism,
pNa which stabilizes two different radicals simultaneously within
3 1a + COZ‘Ad standard conditions 3ab . . .
23%, 0% ee the chiral Mg coordination sphere

6
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Mechanism Studies

(E) UV-vis absorption spectra

—2b
1a+2b
1a+2b+Py+[Mg]|

—— 6+[Mg]+L1
1a+6+[Mg|+L1

Absorbance (a.u.)
=
=

Fed
o

0.0

T T 1
400 500 600
Wavelength (nm)

[e] | N
N (o] o} 0,

SN Bz Gé% TN
| N N.

Z o'Ad %

1a 2b

L1
ONa’

(H) Linear effect experiments

y=0.91x-1.82
804 R*=0.998

ee (L1)

= Bathochromic shifts (E) (B-keto ester (1a) +
iminopyridinium ylides (2b) + Mg salt + Ligand
L1)

- Support the prochiral quaternary CT complexes

= Linear effect experiments show involvement of
one molecule of chiral Mg catalyst in
stereocontrol. (H)

J. Am. Chem. Soc. 2025, 147, 25264-25272
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Mechanism Studies Crossover experiments: inner-sphere vs outer-sphere

(F) Crossover experiments

o
oTBs 0 . NHBz
H fac-Ir(ppy)s (2 mol %)
1 SNz o ___ standard conditions__ NHBZ Sco,'Ad
@ | e * ‘ O'Ad COZ‘Ad

0'Ad
Giis 3ab:3ai=15: 1
5 (0.15 mmol) 9 (0.1 mmol) 2i (0.1 mmol) 3ab, 0% ee 3ai, 71% ee
fac-Ir(ppy)s (2 mol %)
OoTBS 4 “NHB:
N R o Mg(CIO4),#6H,0 (0.1 mmol) NHBZ 2
) Bz L1 (0.15 mmol) GO Ad
@ + 0'Ad co;Ad
Z 1o o'Ad OMe Acetone (4 mL), Ar, OMe
18W Blue LEDs, 40 °C, 48 h Bl - Bals 1::2.3
5(0.15 mmol) 9 (0.1 mmol) 2i (0.1 mmol) 3ab, 0% ee 3ai, 84% e

. ,ZJ OTBSO o) \NHBz
ST 1
@ | N" "Bz + olaq __Standard conditions ©:/§\NHB12 CO,'Ad
- o'ad CO,'Ad

OMe OMe
3ab:3ai=1:4

1a (0.1 mmol) 9 (0.15 mmol) T 0%5e Saitoonies
4 /o b o

2i (0.15 mmol)

=Objective
=Test if dual coordination of enolate and ylide (Mg-L1) is
essential for high enantioselectivity.
=Confirm that outer-sphere pathway (free radical
trapping) provides no stereocontrol.

1) Conditions: Standard + Ir(ppy);

* Quter-sphere pathway gives ee = 0%

* High ee of 3ai arises from inner-sphere mechanism.

2) Conditions: Increased catalyst (Mg(ClO,), and L1):
* More Mg-L1 favors inner-sphere pathway, increasing ee.

* Quter-sphere stillee = 0%.

3) Conditions: Substrate variation: 1a + excess 2i &9

* Coordinating 2i reacts via inner-sphere; non-coordinating 9 triggers only
background reaction ( + stillee = 0%).

=Conclusion
High enantioselectivity requires inner-sphere (dual coordination).
Catalyst amount and substrate choice control inner-/outer-sphere
contributions.
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Mechanism Studies from EPR studies

(G) EPR studies

|
2b o’@

DMPO (0.05 mmol)

Acetone (4.0 mL)
1a 40°C, Ar

(i) 18 W blue LEDs, 1 h

weak EPR signal
Without Mg(CIO4),*6H,0/L1

(iii) 18 W blue LEDs, 1 h

(i) in the dark

no EPR signal

EPR signal : COZ'Ad :

(iv) 18 W blue LEDs, 1h ! L
Mg(CIO,)z+ 6H20 (20 mol%) | o '
L1 (30 mol%) H H

Without Mg(ClOy),* 6H,0/L1 obvious
EPR signal

DMPO-adduct-H
[M+H]**:424.2482
Found: 424.2482

{  DMPO-adduct

Radical

Condition .
Generation

(i) Dark (no light) None

(ii) 2b only (light) Trace

Ell:gr?tt)) *1a Increased
(iv) 2b+1a * Moderate

Mg?* + L1 (light)

EPR Signal

None

Nearly
none

Strong
sextet

Weak
sextet

Stereocontrol

None

None

None

Yes

Comments

No reaction occurs >
confirms photochemical
nature of the reaction

Light-induced SET of enol
tautomer generates a small
amount of a-carbonyl
radicals

Free radicals increase due to
background reaction;
uncontrolled radical
formation

Radicals are generated and
preorganized within the chiral
Mg coordination CT complex
= enantioconvergent control
(inner-sphere mechanism)
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DTF calculations

(A) Energy profiles calculated for the enantioselectivity-determining process.

AG kcal/mol

s (R)-IIT s
“a.:32.8 / !
450 "N\
(S)-111 (S)-11
(B) Proposed reaction pathway
1a
. : . [Mg]*:
Mg] Mg} O/”{'Q] \W‘/BZ Mg(CIO,); « 6 H,0 /L1
o}
N 1
N 0'AdN
N .
{ »Z ‘ CT excited state I' Chargsiseparation
Adduct 7 BN
2b l H | 7

Mal'_ Bz

oL Asymmetric
@@4 ENJ charge-transfer
O'AdN catalysis

charge-transfer complex [

o

NHBe Protodemetalation

3ab

Enantioconvergent
cross-coupling
\\ [Mgl*

I
/N

/I

Qo

&
¥~ ~o'Ad

(R)-IIT

Figure 3. Mechanistic studies. (A) Energy profiles calculated for the enantioselectivity-determining process. (B) Proposed reaction pathway.

radical-radical =

} TSy
O Mg @N @O  favored )

DFT calculations show that intermediate Il
undergoes radical-radical cross-coupling via
the TSy transition state, which is the lowest-
energy pathway (AG$ = 11.5 kcal/mol).

The alternative TSg pathway has a higher
barrier (AG$ = 15.2 kcal/mol).

The low-energy pathway is stabilized by -1t
stacking, hydrogen bonding, and steric
effects.

The 3.7 kcal/mol energy difference explains
the experimentally observed 90% ee.

The absolute configuration of the product
(R)-3ab aligns with DFT predictions.

J. Am. Chem. Soc. 2025, 147, 25264-25272
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Mechanism Proposal

(A) Energy profiles calculated for the enantioselectivity-determining process.

i
A
0. 2 0,
R, *
ol

AG kcal/mol
i N
TSs 0 P o,
15.2 N Net
pcmmm— N f L Now Mg
0.0 -5 g % ,I !
S TSg ~. ST HR
)4 s (R)-IIX A o}
. fk 3 7
T /. s 0'Ad
-45.0 .
(8)-111 (S)-1m1 (R)-III hd
(B) Proposed reaction pathway .
1a
. . . [Mg]*:
[Mg] [Mg] O/[’\:/‘QI\N,BZ Mg(CIOu)y = 6 H,0 / L1
s} 1
o, .
SNz O‘AAQ .
{ > ‘ CT excited state I' Charge separation
Adduct 7 N °
2b l H | »
Mol Bz 2 _-Mal{
o "y Asymmetric 9 r'ED\'.“D' .
@E&L{ @ charge-transfer O.v [ ez
O'Ady catalysis oA
charge-transfer complex I n .
o
CO,'Ad Enant_ioconvgrgent
“NHBz radical-radical =
- Protodemetalation cross-coupling °
al
[Mg]*
n S
TSg .
©® Mg @N @O favored

i
i
0I Jo}

:
0'Ad

(R)-III
Figure 3. Mechanistic studies. (A) Energy profiles calculated for the enantioselectivity-determining process. (B) Proposed reaction pathway.

. Catalyst Activation:
N-protected iminopyridinium ylide 1a +
Mg(ClO4)2-6H20/L1 > ylide-Lewis acid adduct

Prochiral Complex Formation:
Adduct 7 + B-keto ester 2b > prochiral
quaternary CT complex |

Photochemical Step:

Visible light irradiation > a-carbonyl radical +

N-centered radical

Enantioconvergent RCC:

Radical intermediate Il > (R)-1ll >
protodemetalation > 3ab

Catalyst Regeneration:

Mg(ClO4)2-:6H20/L1 regenerated > new
catalytic cycle
J. Am. Chem. Soc. 2025, 147, 25264-25272



Short summary

(C) This Work: magnesium-mediated asymmetric radical-based a-amidation of B-keto esters

inner-sphere mode

photoinduced enantioconvergent radical-radical cross-coupling strategy

o M pe
- o N
NP 1 |
he n R

charge-transfer complex I

Lewis acid-supported N-centered radical

- [MglI% *
®
A AN
—CT—> RZL: R // PG e
NP " R
I

chiral catalyst-bound radical intermediate

ingle Mg catalysi:

[e}

P NHPG
R2—1 .
NP COR!
~ n

3 (30 examples)
up to 79% yield & 94% ee

high selectivity

Dual-coordination strategy allows

control of cross- and enantioselectivity

in radical-radical coupling

Broad substrate scope and good
functional group tolerance

Enables efficient synthesis of
substituted quaternary B-keto amino
acid derivatives

Uses earth-abundant magnesium as
an effective asymmetric
photochemical catalyst
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= Research — strategies for radical-radical cross coupling —

o Hydrogen-bond interaction (C-C bond formation)
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Advances in C—H Activation and Photoredox—Metal Dual Catalysis

Catalyst Controls Selectivity Among Multiple sp® C-H Bonds in Cross-Coupling

H H
H H m
8%
HiC™ °N” "H /-v/.\ 5 N
—
i /&o \./ \./ i /go
H:(:/i\CH3 Hﬁc/i\cw3
CHy triple catalytic CHsy
activation
19 sp® C-H bonds single C-H functionalization

Science 352, 1304—1308 (2016)

Direct sp® C-H alkylation

o

_Me
N
éoc Slngle site alkylation

N-Boc-Prozac Alkylated N-Boc-Prozac
The matching of electronic polarity between the C-H

bond and the HAT catalyst Nature volume 547, pages 79-83 (2017)

Catalytic
manifold = CF3

i 7 CF3 |
" e® A
N
Br

39 C-H nucleophiles Single-step C-H arylation

Nature 560, 70-75 (2018).

Combining photoredox catalysis with
transition metal catalysis has enabled
reactions of non-directed substrates,
expanding the scope of C-H functionalization.

MacMillan reported numerous examples

of C(sp®)-C(sp?) and C(sp®)-C(sp?) bond
formations through HAT-mediated C-H
cleavage followed by nickel-catalyzed cross-
coupling.

L\ / ‘\
R2

= —og”

Captured by transition metal
good chemoselectivity

40
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Radical reactions to form C(sp?)-C(sp?) bonds

Transition metal
catalyzed cross coupling
MacMillan and coworkers

L R!

> M 4 ‘\ R2

L L\/Q/§;R3
R1

Captured by transition metal
good chemoselectivity

Radical-radical cross * Conventionalradical-radical coupling suffers from poor
coupling chemoselectivity when the two radicals have similar electronic
properties,
77N/ N

%\\Rz 48\&5 > Lead to complex mixtures and side products
R1 oV RA A
3

Radical-radical coupling > Direcrt coupling to form C(sp®)-C(sp®) bonds has
poor chemoselectivity remained highly challenging

* Especially direct coupling between C-O and C-H is
largely unexplored.

41



Selective radical-radical cross-coupling promoted by hydrogen-bond

e acceptor
Benzoyl-activated
alcohol * This study introduces a SET strategy that cleaves

R
c PR S . .
NHPG ! NHPG oH—N amine a-C-H and heterobenzylic C-O bonds
(N;\/O\H/Ar + )\ e GJQ\/\\ <O\ /9 (‘)

e donor
Amine

I H"TR . Phosphoric acid R o K * - Generating two radicals under photoredox
Abundant feedstocks Unatural amino acids \N\ 7 Cond itionS
This work:
Hydrogen-bond promoted
d _ Mo M * Hydrogen-bond interactions with phosphoric
| Me, o H H Z . . . . .
Sy 0 O o @\ . acid guide the selective radical-radical cross-
H H N Vi H .
HN N\é)J\H/\'Pr _ . HN':.( OY\N)J\N/H Coupllng.
° N I e Pro _NH k/o
R—/ i (o} Ph N HNYO o N
—N H . eg e
© CF, o B(OH), v' The method is redox-neutral, transition-metal-
CTRL-1 inhibitor SARS-CoV-2 inhibitor 20S Proteasome inhibitor free and Compatible W|th dive rse aza-
b

. . ) ) heterocycles.
Unnatural amino acids and bioactive molecules y

v Enables efficient synthesis of unnatural amino
acids and bioactive molecules.

Nat Commun. 2024, 15, 6745



Optimization of Reaction Conditions

* 1aand 2a (N-phenylmethyl glycinate) underwent

® o - e ey, [ cross-coupling under Ir(ppy), photocatalysis: 49%
N H” Sco,Me . e N CO,Me .
! DCM, r.t., Blue LED Y|eld
Entry Derivation standard conditions Yield (%)®
1 Ar = 3,5-di-CF3-CgH3 (1a), R = Ph (2a) 49
2 Ar = 1a, R=4-CFy-CgH, (2b) 8 * Substituents on glycinate (entry1-4):
3 Ar =1a, R=4-F-C¢H, (2¢) 53
4 Ar=1a, R=4-OMe-CeH, (2d) 32 highest yield
5 Ar = 2,4,6-trifluorobenzene (1b), R=2a 37
6 Ar = 2,4,6-trichlorobenzene (Ic), R=2a 15 C F < F lu oro < O M e
7 Ar = 4-CF3-CgH4 (1d), R=2a 40 3.
8 Ar =1a, R=2a, DME as solvent 33
9 Ar =1a, R=2a, MeCN as solvent 33 EWG A E D G
10 Ar =1a, R=2a, without PA 40
" S e T Eenlecs) o4 * Alcohol activating acyl group (entry 5-7):
12 Ar =1a, R=2¢, NaHCO; (2 eq), 60 °C 72 .
13 the same conditions as entry 12, in DME 74 Benzoyl-actlvated alcohol=e"- acceptor
* e * « highly electrophilic one is most effective
15 I::szrrr;(e conditions as entry 12, in 0 ° 3,5'b|S(C F3)benzoate

* Solvent: CH,CL, optimal (entry 8-9)

* Yield improved with NaHCO,, heating, and 1,2-DME:
up to 74% (entry 11-13) 43
Nat Commun. 2024, 15, 6745



Optimization of Reaction Conditions

DU G P O
: \g/ H7 COMe  pem, rt., Blue LED N COMe
Entry Derivation standard conditions Yield (%)°
1 Ar = 3,5-di-CF3-CgHs (1a), R = Ph (2a) 49 = Control expe riment
2 Ar =1a, R=4-CF5-CgH, (2b) 8 . . .
3 Ar =1a, R= 4F-Colls (20) 53 * No phosphoric acid > decreased yield (entry 10)
4 Ar =1a, R=4-OMe-CgH, (2d) 32
5 Ar = 2,4,6-trifluorobenzene (1b), R=2a 37 . A .
6 Ar = 2,4,6-trichlorobenzene (1c), R-2a 15 * Nolrcatalyst > 19% yield, suggesting formation of a weak
7 Ar = 4-CF3-CgH4 (1d), R=2a 40
8 Ar =1a, R=2a, DME as solvent 33 EDA Complex (entry 1 4)
9 Ar =1a, R=2a, MeCN as solvent 33
10 Ar =1a, R=2a, without PA 40 .
1 Ar =1a, R=2c, NaHCOj3 (2 eq) 64 * Dark reaCtlon
12 Ar = 1a, R=2¢, NaHCO5 (2 eq), 60 °C 72 = no product, light essential for SET process (entry 15)
13 the same conditions as entry 12, in DME 74
14 the same conditions as entry 12, with- 19
out Ir
15 the same conditions as entry 12, in 0
the dark

Nat Commun. 2024, 15, 6745



Substrate Scope — Alcohol derivative-

NHA Ir] catalyst, PA NHAC i
@Q\/o M § _Micalalveli B8 o (”D\/k ' | Ar=35i-CFs-CeHs
N \ﬂ/ N coMe :

HT TcozMe 60 °C, Blue LED :
3 | AR =4F-CH,
Alcohol deravative  Glycine deravative Unnatural amino acid

Scope of primary pyridine methanols: c

OMe F Br
i N NHPMP. i X NHAF ‘ = NHAF i o NHA i £ NHAT® ‘ £ NHAI®
z Z 2 Z 2 Z
N COMe N COMe N COMe N COoMe N COMe N COMe
9 9 0%

1,67% 2,74% 3,56% 4,6 5,60% 6,56%
Br Me OMe
F. cl Bi
| N nHaf mNF | N A | N nHaf J N neaA | N A
2 P P > P P
N coMe N Co,Me N coM N CoM N CoM N coM
7,60% 8,52% 9, 62% 10,73% 11,60% 12, 50%
M MeO. MeO,C. NC.
® ‘ N A © ‘ N neaf © ‘ N A | N nHaf | N nHA
2 2 P 2 P
N’ 'CO,Me N’ 'CO,Me N’ 'CO,Me N’ CO,Me F N’ 'CO,Me
13, 62% 14, 74% 15,41% 16, 62% 17, 56%
F. F
Dl (] e D () e (Y e
4 ~ P 2 P
a7 N coMe BT N COMe  Me0,C” N CoMe  MeO” N CoM N CoM
18, 48% 19, 40% 20, 82% 21,61% 22, 66%
Bi Cl B OMe
(N e 'm;w N A Y DG 8 .
NHA(
N,
N COMe N7 COMe Z "COM Z COM /)\-/l\co M { P
N CoM
23, 50% 24,52% 25,51% 26, 72% 27, 63% 28,36%

Scope of other aza-heterocycles:

Me,
s /Me \
</\O NHAr® </\S NHAr® < ‘ NHA® / N NHAr® N~n NHAr® N \ NHA®
A X A, § A, UG, QAL
N CO,Me. N CO,Me. N CO,Me N "COMe CO,Me N COMe.

29, 52% 30,41% 31,33% 32,52% 33,42% 34,36%

Scope of secondary pyridine methanols:

N . N . {
R i NHA N A NHAY 2
‘ N NHAF ( | P | By | B N COMe.
P
P N COMe N COMe
N coMe N COzMe 2 N COMe X Me.
Ve Me, Me Me Ph 3

35,71%, 1.3:1d.r. 36,51%, 1.1:1d.r. 37,57%, 1.4:1d.r. 38,53%, 1.1:1d.r. 39,53%, 1.1:1d.r. 40,51%,1.2:1dr.

Scope of tertiary pyridine methanols:

.
. o ’
; S | N NHAF | N Nad | N nHaf i NHASE [
P 2 7 N CoMe
z N COMe
7 come N coMe N co,Me N coMe -
"™ o N
Boc

X oc
41,46% 42, 50% 43,44% 44, 48% 45, 58% 46,51%

* Glycinate substrates: PMP (p-metoxy phenyl)
substitution gave 67% yield, removable under oxidation

= Primary pyridine substitution:

* 3,4,5-positions: moderate to good yields

* 6-position: yield decreases as atomic radius
increases (F~> Cl~> Br)

> Affected by sterics

> Suggests hydrogen-bond interactions are crucial for

successful coupling

* Multi-substituted pyridines and pyridinemethanol
derivatives (3, 4-position): moderate to good yields

= Aza-heterocycles : moderate yields
> Traditional methods struggle to synthesize nitrogen-
containing unnatural amino acids, making this method a

significant strength.

45
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Substrate Scope — Alcohol derivative-

NHAr® Ir] catalyst, PA NHAr® i
WAL _Meslebsk B8 @/k " | Ar=35diCFyCeHs
N b H” ScoMe N i

60 °C, Blue LED CO:Me
° ArF = 4-F-CeH,

Alcohol deravative Glycine deravative Unnatural amino acid

Scope of primary pyridine methanols:

oMe F Br

i N NHPMP i = NHAI® i N NHAr® i N NHA® i N NHAF® = NHA®
2 2 P 2 2 2

N CO,Me N COMe N COMe N N

-

1,67% 2,74% 3,56% 4,60% 5,60% 6,56%
m m m AMEe® e e P e = Secondary alcohol derivatives: moderate to good yields,

limited diastereoselectivity (35-40)

" MeO. Me0,C. NC.

. | Ny NHAF “ ‘ Ny NHAF i | N NHAF ‘ N near ‘ N nHar
P > P P
N COMe N "COMe. N N

z
COMe COMe N COMe

13,62% 14,74% 15,41% 16, 62% 17, 56%

. Tertiary alcohols + glycinate derivatives: enable formation
5 o 1 G 5 T (6 A W5 of quaternary carbon centers

18, 48% 19, 40% 20, 82% 21,61% 22,66%

) v’ Effective for transformations challenging in traditional

-

COMe

Z

cO,Me

. P transition-metal-catalyzed reactions (41-46)
23,50% 24,52% 25,51% 26,72% 27,63% 28,36%
Scope of other aza-heterocycles: o e e
o AT s AT 2 NHAF z/\n’me NHA \N~N NHAF® N 1 NHA
<N\/)\/J\cozme <N\/)\/kcozme <\N]\/kcozm. NMcone wcozm <\Nj\/kcozm
29, 52% 30,41% 31,33% 32,52% 33,42% 34,36%

Scope of secondary pyridine methanols:

| N AT
‘ Ny NHAF i Ny NHAf i t NHAF | Ny, NHAF | t NHA - -
%cog@ N CO,Me 9 COzMe N coMe N COMe '
e e Me Me’ Ph Me
35,71%, 1.3:1d.r. 36,51%, 1.1:1 dr. 37,57%, 1.4:1 dr. 38,53%, 1.1:1dr. 39,53%, 1.1:1dr.  40,51%, 1.2:1dur.

Scope of tertiary pyridine methanols:

N NHArF N o - NHAR
| RS NHAE | N A [ i NHAr* | D
2 P
P 7 N coMe N CO,Me
coaMe N COMe 2 N COMe 2
Mé Me o’

N

COMe

2
A7
-
2
z
H
%

@
g
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41,46% 42,50% 43, 44% 44,48% 45,58% 46,51%
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Substrate Scope — amino ketones and peptides-

Scope of amino ketones

47,R=H, 71% N e NAe N maE (F
N NHAF ) 48,R= 4F53/u I/ J\ I/ |N
I TR 49,R= , 66 N » N x
z N
N 50,R= d\ Me, 57% o

51, R = 3-Br, 56%
52,R = 2-Me, 76% 53, 60% 54, 56% 55, 54%

O\)Y% W W . W % * a-Amino ketones & di-/tri-peptides:
s o e e * moderate to good yields, tolerant to EDGs and EWGs

scope tpipetens L m—— X Benzylamine reacts only when an EWG is present on the

N e, N e, e Q) benzene ring (60)
@\)\(“%w ne A kar% S

...... et LS e ........f?'.f"."."’.‘.?fi‘.5‘.‘.‘.....,..,,..............ff:.sf‘.."i',.’.'f'.'.f’:f'......... Stereoselectivity control
, * Chiral auxiliaries introduced to glycinate substrates
) e NG g g * Best: chiral 2,5-diphenylpyrrolidine > highest

Pm@wh Ph\@wh Pnﬁ_mw Pnﬁ,,\Ph pn\Q WPh . !
65, 56%, 2.7:1 d.r. 66, 45%, 4.9:1 d.r. 67, 44%, 5.5:1 dur. 68, 47%, 3.3:1 dur. 69,40%, 2.8:1 d.r. d IaSte I’eoseleCtIVIty (65_69)

b = e e Applications
e s * Late-stage modification of B-adrenergic receptor
R - blocker Piribrate (71)
O T =TT Y\j} « Synthesis of histone deacetylase inhibitors (74)

72 73,62%,1.29 74, Histone deacetylase inhibitor

Fig. 3| Substrate investigation for the amines and synthetic applications. All of the yields were isolated yields. The diastereomeric ratio was determined by
isolation yield.
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Mechanistic Insights (Control Experiments)

a. c.
Q N Me
0T A g — No product obs: + N N (75, 10% isolated)
conditions | 2c sta'rj\%ard Me
H conditions
e
b. d
N 1a i X NHAr™
A standard NHArF standard
| y2e — | + — MeO,C. N Meozcﬁ)\cozme
N 0\“/“’ conditions N COMe 2¢c  conditions i e Tonr
: NHA 4
° with PA: 74% yield ;
without PA: 38% yield : 76, 5% 77,8%
e.
7 2 standard [ Nea®
+ 2C s— + +Ir
N o\n/Ar conditions . N~ come la —2 —la+2c —la+2c+Ir
©° with PA: 72% yield P
without PA: 19% yield Z
i g _Standard ”@\)N:NF o
A © conditions Z coMe N O
° with PA: 51% yield : : A;’
without PA: 47% yield nm
. Xy ] N
+
[ _A_ocon A’)J\O, L .
1a 78 t
Al coMe
H—N N £
PA o @ ~ i N NHA
Ir(ly I R >
o - CoMe
N PA 4
7

NHAI® Ir(iiny*

- .
H™ "COMe NHAF 1,2-H shift NC“’
.
2 COMe
H” coMe base 79

= Nitrogen is essential: Benzyl alcohol fails (a)
- N atom stabilizes radical and provides H-bonding site

= Role of phosphoric acid: Absence lowers yields (b)
- Promotes cross-coupling via H-bond + radical polarity matching

= Radical formation confirmed:

TEMPO-trapped product (75) observed (c)
Minisci-type (76) and homo-coupling products (77) observed (d)

= No significant red shift observed for the 1a-2c mixture (e)
- EDA complexis weak:
- SET mediated by Ir photocatalyst is the main pathway
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Proposed reaction pathway

Ir(ll) Ir(11)

Ir(liny*

NHAF
H)\CO M - ] NHA™
2Me NHAr 1,2-H shift
2c —_— .
CO,Me
H CO,Me base
2 79

= Ta+Ir(lll) » pyridyl methylene radical (78)
= 2c +Ir(lll) > a-amino radical (79)

= 78+ 79> (H-bond with phosphoric acid)
> formation of C(sp®)-C(sp®) bond
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Short Summary

PG\
! H—N

e (o) Ar + /,\ﬁPG e Het NHPG <O\ /9'— f')

N P
\[(1/ H R Phosphoric acid N R o’ \o
\H\- —_—
Abundant feedstocks Unatural amino acids L/
This work:

Hydrogen-bond promoted

= Developed a deoxygenative C(sp®-C(sp? radical cross-coupling of heterobenzylic
alcohols and amines under hydrogen-bond control

= Broad substrate scope and functional group tolerance
= Diastereoselectivity controlled using chiral auxiliary 2,5-diphenylpyrrolidine

= Enables efficient synthesis of heterocyclic unnatural amino acids
> applicable to drug discovery and chemical biology.
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o Background and difficulties of radical-radical cross coupling

= Research — strategies for radical-radical cross coupling —
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o Hydrogen-bond interaction (C-C bond formation)

= Summary
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Summary

1. Persistent Radical Generation via NHC Catalysis
= First example of C-radical-O-radical coupling under NHC catalysis
= Applicable to C—C bond formation, including 1,3-diketones

2. Lewis acid complex formation

= Dual coordination using a Lewis acid enables control of cross- and
enantioselectivity

= Allows efficient synthesis of substituted quaternary B-keto amino acids

3. Hydrogen-Bond Control

= Deoxygenative radical cross-coupling of heterobenzylic alcohols and amines
= Diastereoselectivity controlled via chiral auxiliary
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