Neutral Boryl Radicals ~ Characteristics and Synthetic Applications ~ Literature Seminar #2 2025/06/19 M1 Yusuke Nakamura

Contents

1. Introduction

2. Ammonia synthesis at RT by boryl radical

3. Radical addition of amine – boryl radical

4. Utilizing pyridine – boryl radical for construction of bicyclic ring

5. Summary

Closed-Shell Borane Species

B-based closed-shell species are well studied and utilized many kinds of reactions.

> Ravelli, D. *et al. Chem Catalysis*, **2022**, 2, 957. Huang, Y. Y. *et al. Adv. Synth. Catal.* **2020**, 362, 2778.

Opened-Shell Borane Species

• In the 1980s, Roberts and co-workers discovered relatively stable 4-center– 7-electron type Lewis base–boryl radicals (LBRs).

• In 2008, Curran and co-workers achieved a breakthrough with the discovery of *N*-heterocyclic carbene (NHC)–boryl radicals.

• Due to their unique reactivity, they are currently being studied extensively.

Boryl Radicals

BDE calculated by CBS-4

Rablen, P. R., & Hartwig, J. F. J. Am. Chem. Soc, **1996**, *118*, 4648.

Zipse, H. et al. Chem. Eur. J, 2010, 16, 6861.

Ligated Boryl Radicals (LBRs)

Ligated Boryl Radicals (LBRs)

4-center-7-electron spiecies

Entry	Bond	BDE _{0K} (kcal/mol)
1	H ₂ B-H	105.5
2	NH ₃ BH ₂ -H	102.1
3	PH ₃ BH ₂ -H	92.4
4	pyridine-BH ₂ -H	70.9
5	, Н ВН₂ N ⊕ н Н	80.0

• By coordination of LB, BDE is decreased.

Lewis base $\rightarrow \sigma$ donor & π acceptor ("**push-pull**")

at G3(MP2)-RAD level

Zipse, H. *et al. Chem. Eur. J*, **2010**, *16*, 6861. Rablen, P. R. *J. Am. Chem. Soc*, **1997**, *119*, 8350. Li, P. *et al. Chem. Eur. J*, **2014**, *20*, 1630.

Geometry of LBRs and Localization of Spin Density

SOMO stabilized by σ^*_{P-H} (and d orbital) "Anti" P-H bond 0.02 Å longer than other P-H bonds.

Spin denisity by AIM ... BH_2 0.658, PH_3 0.342 Cf. hyperfine splitting(G) ... Et_3P-BH_2 a(¹¹B) = 17.6 at 183 K

Higher energy level of $\pi^* (\sigma^*_{N-H})$ orbital & electron negativity N > H > P \rightarrow Less stabilization effect & strong distabilization by hyperconjugation (plannar geometry \rightarrow unfavorable)

Spin denisity by AIM ... BH_2 0.898, NH_3 0.102 (more localized at B atom) Cf. hyperfine splitting(G) ... Et_3N-BH_2 a(¹¹B) = 47.5 at 193 K

> Rablen, P. R. *J. Am. Chem. Soc*, **1997**, *119*, 8350. Baban, J. A., & Roberts, B. P. *J. Chem. Soc, Perkin. Trans. 2*, **1984**, 10, 1717.

Reactivity of LBRs

Nagib, D. A. et al. J. Am. Chem. Soc, 2024, 146, 28034.

Reaction Examples

Roberts, B. P. *Chem. Soc. Rev*, **1999**, *28*, 25. Dang, H. S., & Roberts, B. P. *J. Chem. Soc. Perkin Trans 1*, **1993**, *8*, 891. Baban, J. A., & Roberts, B. P. *J. Chem. Soc. Perkin Trans. 2*, **1988**, 7, 1195.

Reaction Examples

Ex 3. Radical addition

Wang, Y. F. *et al. J. Am. Chem. Soc*, **2017**, *139*, 6050. Zhu, C. *et al. Angew. Chem*, **2018**, *130*, 4054.

Summery of LBRs Reactivity (Synthetic Applications)

(New types of reactions are being found constantly. This table is just a guide. There are some examples in Appendix.)

Lu, D. et al. J. Org. Chem, 2017, 82, 2898.

Short Summary

Ravelli, D. *et al. Chem Catalysis*, **2022**, *2*, 957 Lu, D. *et al. J. Org. Chem*, **2017**, *82*, 2898.

Contents

1. Introduction

2. Ammonia synthesis at RT by boryl radical

3. Radical addition of amine – boryl radical

4. Utilizing pyridine – boryl radical for construction of bicyclic ring

5. Summary

Ammonia Synthesis (N₂ Fixation)

Mézailles, N. et al. Angew. Chem. Int. Ed, **2023**, 62, e202209102. Peters, J. C. et al. Chem. Rev. **2020**, 120, 5582.

Predictive DFT and Selection of B Radical Source

DFT calculation

 $DFT \rightarrow B$ radicals are promising candidates for N_2 activation.

• They chose R₂B-CI + reductant for generating corresponding boryl radicals.

Consideration

• B radicals are highly unstable.

• B-B bond formation is favorable especially when B substituents have donor atom.

 \rightarrow They decided to use Cy_2B -CI as precursor.

Mézailles, N. *et al. Angew. Chem. Int. Ed*, **2023**, 62, e202209102. Hartwig, J. F. *et al. Organometallics*, **2003**, 22, 365.⁵

Optimization

Entry		-) Solvent	Reducing agent	Stoich. Red	PN ₂ (bar)	Yield		
1	0.04	THF	К	1, 2.5	1	7, 41	THF was the best.	
2	0.04	MeTHF, Pentane, Toluene, Et ₂ O, Dioxan	e K	2.5 or 3.3	1	0 (dioxane \rightarrow Trace)		
3	0.04	THF	Na, Na/Hg, Na/naphtalene, KC ₈ , Sml ₂	2.5	1	0	 Reducing reagents other than K failed while B-H bond formation was observed. 	
4 ^a	0.04	THF	к	2.5	1	56		
5	0.04	THF	К	2.5	20, 40, 80	60, 76, 94	 2.5 eq of K was needed. 	
6 ^b	0.08	THF	К	2.5	1	38	· High N. proceure improved viold	
7 ^c	0.04	THF	К	2.5	1	0	• \square gn \mathbb{N}_2 pressure improved yield.	
8 CatB-0	CI 0.04	THF	к	2.5	1	0	• Alkyl substituents \rightarrow subsequent study	

a ... K was cut into 5 pieces.

b ... 100 times scale

c ... 60 °C or -70 °C

* Yields were calculated by $3 \times (NH_4^+)/Cy_2BCI \times 100$.

Mézailles, N. *et al. Angew. Chem. Int. Ed*, **2023**, 62, e202209102. Hartwig, J. F. *et al. Organometallics*, **2003**, 22, 365

NMR analysis and EPR Monitoring

• NMR analysis (prior to hydrolysis)

① ¹¹B NMR → Side products (Cy₂BH₂⁻ and Cy₂BH) could be observed.

(Cf. B-N bond containing species were not observed. Due to peak broadening by B-N coupling ?)

② ¹H, ¹⁵N, ¹⁵N-¹H HMBC → NH(BCy₂)₂ was observed. N(BCy₂)₃ was not detected. Considering NH₄Cl yield, NH(BCy₂)₂ : N(BCy₂)₃ = 7:93.

• EPR analysis

At least 2 kinds of radicals were detected.

(1) Triplet (1:1:1) at g = 2.0036

 \rightarrow ¹⁴N (I = 1) - centered radical. a_N = 11.8 G and unresolved interaction(< 1 G) with surrounding H atoms.

② Singlet at g = 2.0034

 \rightarrow C or B (¹¹B I = 3/2 or ¹⁰B I = 5/2) centered radical (hypothetical) with unresolved hyperfine constant. (Cf. This peak was also detected under Ar atmosphere.)

Mézailles, N. et al. Angew. Chem. Int. Ed, 2023, 62, e202209102.

DFT Calculations

Lowest energy pathway leading to N(BCy₂)₃

Figure 3. Computed pathway: the energies are relative to " $6A + N_2$ ". Addition of A ($Cy_2BCI^{\bullet-}$) to N_2 up to the formation of three N-B bonds (compound H, three-electron reduction of N_2). Note that the energy positioning of the various species does not take into account any potential stabilizing interactions developing between K⁺ and Cl⁻ in the experimental situation.

- Boryl radical generating pathway is reasonable.
- Radical anion B indicates boryl radical weakens N-N bond. $(1.097\text{\AA} \rightarrow 1.174\text{\AA})$
- C was kinetically and thermodynamically preferred.
- But C centered radical is lower energy than **B**. Kinetic control is important.

Mézailles, N. et al. Angew. Chem. Int. Ed, 2023, 62, e202209102.

Cy₂B-Cl

N

Cf.

DFT Calculations

Lowest energy pathway leading to N(BCy₂)₃

Figure 4. Computed pathway: the energies are relative to " $6A + N_2$ ". Functionalization to the hydrazine $(Cy_2B)_2NN(BCy_2)_2$ derivative (K) followed by reductive NN bond splitting process leading to bis-borylamide N.

- N-N bond (46.1 kcal/mol) cleavage \rightarrow endoergic (8.0 kcal/mol)
- M+N \rightarrow N+N strongly excergic (- 49.7 kcal/mol)
- N-H product might be formed by HAT from solvent.

Mézailles, N. et al. Angew. Chem. Int. Ed, 2023, 62, e202209102.

Short Summery

A new strategy for N_2 fixation utilizing boryl radical was developed.

 \bigcirc At room temperature (& at atmospheric pressure) \bigcirc No use of transition metals

 \triangle Scalability (0.16 mmol scale reaction.) \triangle Not catalytic, use of strong reducing agent

Mézailles, N. et al. Angew. Chem. Int. Ed, 2023, 62, e202209102.

Contents

1. Introduction

2. Ammonia synthesis at RT by boryl radical

3. Radical addition of amine – boryl radical

4. Utilizing pyridine – boryl radical for construction of bicyclic ring

5. Summary

Synthesis of Boryl Aromatics

Minisci Reaction by Amine - Boryl Radical

Orthogonal reactivity can be realized?

• Minisci approach by boryl radical.

This approach needs

Stability of borylating reagent
Boryl radical with nucleophilicity
Borylated product is stable while amenable to further functionalization.

They chose amine - boryl radical.

1 Highly nucleophilic 2 Stable 3 Inexpensive

Leonori, D. *et al. Nature*, **2021**, 595, 677. Larsen, M. A., & Hartwig, J. F. *J. Am. Chem. Soc*, **2014**, *136*, 4287. Willis, M. C. *et al. Angew. Chem*, **2021**, *133*, 11168.

Reaction Design

Optimization

Entry	PC	Persulfate	Brønsted acid	Yield
1	-	K ₂ S ₂ O ₈	TFA	45
2	4CzIPN	K ₂ S ₂ O ₈	TFA	74
3	[lr(ppy) ₂ (dtbbpy)]PF ₆	K ₂ S ₂ O ₈	TFA	61
4	fac-lr(ppy) ₃	K ₂ S ₂ O ₈	TFA	62
5	Ru(bpy) ₃ (PF ₆) ₂	K ₂ S ₂ O ₈	TFA	60
6	Mes-Acr(ClO ₄)	$K_2S_2O_8$	TFA	54
7	4CzIPN	(NH ₄) ₂ S ₂ O ₈	TFA	88
8	4CzIPN	(NH ₄) ₂ S ₂ O ₈	AcOH	78

• Without PC, reaction proceeded. But this condition cannot be improved and be applied to most of the substrates.

 \equiv

structure

• Amine – borane was the best boryl radical source.

Substrates Scope

Leonori, D. et al. Nature, 2021, 595, 677.

Synthetic Applications

Short Summery

Leonori, D. *et al. Nature*, **2021**, 595, 677. Leonori, D. *et al. J. Am. Chem. Soc*, **2024**, *146*, 24042.

Contents

1. Introduction

2. Ammonia synthesis at RT by Boryl radical

3. Radical addition of amine – boryl radical

4. Utilizing pyridine – boryl radical for construction of bicyclic ring

5. Summary

Pyridine – Boryl Radical

• Ketyl radical formation by pyridine – boryl radical

Chung, W. J. et al. Org. Chem, 2024, 89, 8985.

• Electrophilic pyridine - boryl radical can generate ketyl radical from carbonyls.

$[3\pi + 2\sigma]$ Cycloaddition for the Synthesis of Pyridine Isosteres

Wang, H. *et al. Chem*, **2024**, *10*, 3699. Molander, G. A. *et al. J. Am. Chem. Soc*, **2022**, *144*, 23685.

Optimization

Figure 1. Reaction optimization

^aReaction conditions: S-1 (0.1 mmol), 2a (0.2 mmol), B₂pin₂ (20 mol %), 4-CO₂t-Bu-pyridine (30 mol %), solvent (1.0 mL), Ar atmosphere, and 30 h. ^bYield of isolated product.

^cB₂pin₂ (10 mol %), 4-CO₂t-Bu-pyridine (15 mol %) and 48 h.

^dReaction as in entry 7 but in the presence of 3.0 equiv of TEMPO.

Substrates Scope

Mechanistic Studies

• Competition experiment ... azide \rightarrow activating role

• 2H-azirine is not an intermediate

Isostere Analysis

Wang, H. et al. Chem, 2024, 10, 3699.

Isostere Analysis

- Replacing pyridine with the scaffold decreases the compound lipophilicity (clogP, LogD(7.4)).
- Introducing a 3D scaffold enhances the metabolic stability. (CL $_{\text{int}},\,t_{1/2})$
- Binding affinity to the receptor was not observed.

Contents

1. Introduction

2. Ammonia synthesis at RT by Boryl radical

3. Radical addition of amine – boryl radical

4. Utilizing pyridine – boryl radical for construction of bicyclic ring

5. Summary

Summery

 Various unique transformations were realized utilizing reactivity of boryl radicals

Perspectives

 Selectivity control (Ex. Radical addition or XAT, regioselectivity, asymmetric reaction etc ...)
 Investigation of new reactivity (including new ligands)

Appendix

EPR spectrum

Baban, J. A., & Roberts, B. P. *J. Chem. Soc, Perkin. Trans. 2,* **1984**, 10, 1717. Roberts, B. P. *et al. J. Chem. Soc, Perkin Trans. 2*, **1985**, 11, 1723.

Calculation of BDEs

Zipse, H. et al. Chemistry-A European Journal, 2010, 16, 6861.

Supplemental Information

Boryl radical

Low concentration \rightarrow cannot react with N₂ and dimerize? (reducing reagent other than K)

1.2 (x 10⁵ Å) 0.9 I 0.6 0.3 0 -0.3 -1.2 -1.6 -2.0 0 -0.4 potential / V 85 65 l (x 10⁶ Å) 45 25 5 -2.10 -1.70 . -1.90 -0.90 -1.10 -1.30 -1.50 potential / V

Reduction potential

2.1

1.8

1.5

Koester, R., & Benedikt, G. Angew. Chem, 1963, 75, 346.

Hartwig, J. F. *et al. Organometallics*, **2003**, *22*, 365.

Vs Ag/AgCl

NHC – Boryl Radical for Suzuki Miyaura Coupling

• Boronic acid equivalent synthesis from NHC – borane.

DFT Calculations

8.2 Bond Dissociation Enthalpies (BDE)

DFT Method: UB3LYP/6-31+G(d)

8.5 Activation Energy (ΔG^{\ddagger}) and Reaction Energy (ΔG°) for HAT Reactions DFT Method: UB3LYP/6-31+G(d) [values are in Kcal mol⁻¹]

Solvent: CH₃CN and values in parenthesis are related to the corresponding gaseous phase calculations

HAT Reactions	ΔG‡	ΔG°
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11.9 (19.0)	0.4 (5.8)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-7.8 (-3.9)	-4.8 (-0.5)
$ \begin{array}{c} \overbrace{\underset{H}{}}^{H} \underset{H}{\overset{NMe_{3}}{}} + \cdot \circ - \operatorname{SO}_{3^{-}} \\ \xrightarrow{H} \end{array} \begin{array}{c} \overbrace{\underset{Me_{3}}{}}^{H} \underset{Me_{3}}{\overset{H}{}} + \cdot \\ \end{array} \begin{array}{c} \overbrace{\underset{Me_{3}}{}}^{\dagger} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \overbrace{\underset{H}{}}^{T} \underset{Me_{3}}{\overset{H}{}} \\ \end{array} \begin{array}{c} \overbrace{\underset{H}{}}^{H} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \overbrace{\underset{H}{}}^{H} \underset{Me_{3}}{\overset{H}{}} \\ \end{array} \begin{array}{c} \overbrace{\underset{H}{}}^{H} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \overbrace{\underset{H}{}}^{H} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \overbrace{\underset{H}{}}^{H} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \end{array} \begin{array}{c} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} \underset{Me_{3}}{\overset{H}{}} $	10.4 (12.5)	-15.8 (-7.7)
$ \begin{array}{c} \overbrace{\overset{*}{\underset{H}{}{}{\underset{H}{}{}{\underset{H}{}{$	2.5	-25.0 (-19.9)

Spin Center Shift (SCS) by Pyridine – Boryl Radical

• C-F activation (DMAP – boryl radical)

C-O activation (DMAP – boryl radical)

Wang, Y. F. et al. Science, 2021, 371, 1232.

Wang, Y. F. et al. Angew. Chem. Int. Ed, 2022, 61, e202201329.

Asymmetric Reactions

Wang, Y. F. et al. Science, 2023, 382, 1056.

N₂ Fixation by Bolyrene

FAT

Wu, X., & Gao, B. Org. Lett, 2023, 25, 8722.

Other Examples

• C-CI bond cleavage by amine - boryl radical

• Dearomative hydroboration by phosphine – boryl radical

Qin, T. et al. J. Am. Chem. Soc, 2025, 147, 11906.

New Type of Boryl Radical ?

Aggarwal, V. K. et al. J. Am. Chem. Soc, 2025