Persistent/Stable sulfur-based radical cations in organic chemistry

2022. 9. 29M2 Yuri Katayama

Contents

- 1. Introduction of persistent radicals
- 2. Site-selective C-H functionalization by thianthrenation
 - I. Ritter's first work
 - II. Mechanistic insight into site-selectivity
- 3. PTH catalyzed C(sp³)-O formation
- 4. Summary & Perspective

What is a "persistent radical"?

"Persistent" radical: lifetime is significantly longer than ⋅CH₃

↔ "transient" < 10⁻³ s

Kinetic stability

"Stabilized" radical : BDE (R-H) < BDE of C-H alkanes ↔ "destabilized" > 104.9 kcal/mol (BDE for H₃C-H)

Thermodynamic stability

Defined by Griller and Ingold

Griller, D.; Ingold, K. U. *Acc. Chem. Res.* **1976**, 9, 13. Leifert, D.; Studer, A. *Angew. Chem. Int. Ed.* **2020**, *59*, 74.

Persistent Radical Effect (PRE)

One example of PRE-mediated cross-coupling reactions 1963 Perkins

Stephenson, C. R. J. et al., Chem. Soc. Rev. 2018, 47, 7851. Leifert, D.; Studer, A. *Angew. Chem. Int. Ed.* **2020**, *59*, 74.

Contents

- 1. Introduction of persistent radicals
- 2. Site-selective C-H functionalization by thianthrenation
 - I. Ritter's first work
 - II. Mechanistic insight into site-selectivity
- 3. PTH catalyzed C(sp³)-O formation
- 4. Summary & Perspective

Ritter's work

Site-selective aromatic C-H functionalization

2012. Yu

2017. Chattopadhyay

J.-Q., Yu. *et al.*, *Nature* **2012**, *486*, 518. Chattopadhyay, B. *et al.*, *J. Am. Chem. Soc.* **2017**, *139*, 7745.

J.-Q., Yu. et al., J. Am. Chem. Soc. **2020**, *142*, 10571.

Chelation-assisted site-selectivity requires particular directing group or substitution patterns.

No report can introduce synthetically useful linchpins.

Site-selective aromatic C-H functionalization

Site-selective bromination and borylation of undirected arenes is challenging.

Ritter, T. et al., Nature. **2019**, 567, 223. Itami, K. et al., J. Am. Chem. Soc. **2015**, 137, 5193.

Para-selective TEDArylation by Ritter

$$\begin{array}{c|c}
 & CI \\
 & N \oplus \\
 & BF_4
\end{array}$$

$$\begin{array}{c}
 & Ru(bpy)_3PF_6 \\
 & Pd(II) complex
\end{array}$$

$$\begin{array}{c}
 & \Theta_{BF_4}
\end{array}$$

$$\begin{array}{c}
 & Pd(II) complex
\end{array}$$

$$\begin{array}{c}
 & \Theta_{BF_4}
\end{array}$$

$$\begin{array}{c}
 & Pd(II) complex
\end{array}$$

$$\begin{array}{c}
 & P : o > 99 : 1
\end{array}$$

- TEDA dication with high electron affinity
- Arene-to-radical charge transfer in radical aromatic substitution

Highly site-selective but not synthetically useful

Highly exergonic radical addition with an early TS

→ Small electronic bias leads to low site-selectivity.

Hypothesis

- High endergonic radical addition with a late transition state
- Larger electronic difference leads to higher selectivity

Electrophilic persistent sulfur-based radicals

- ✓ No deleterious side reactions
- ✓ An endergonic radical addition with a late TS

Thianthrene radical cation

Studied from 1970s by Shine et al

- Persistent radical
- Sulfonium salts as versatile intermediates

Ritter, T. et al., Nature. 2019, 567, 223.

Previous study about thianthrene radical cations

Para-selective thianthrenation

Electrophilic addition of thianthrene radical cation or dication

Shine, H. J. et al., J. Org. Chem. 1971, 36, 2923.

- × Limited to electron-rich arenes
- × Low functional group tolerance
- × No synthetic utility
- × No detailed investigation towards the selectivity

Reaction design

Reaction design

Fig. 2 | Substrate scope of thianthrenation. $^{\rm a}$ Nonfluorinated thianthrene S-oxide and nonfluorinated thianthrene were used instead of 1 and 2; no additional acid was used. The reaction was initiated at -78 $^{\rm a}$ C. $^{\rm b}$ BF₃OEt₂ was used instead of HBF₄OEt₂. $^{\rm c}$ TfOH was used instead of HBF₄OEt₂.

^dThe amino group was trifluoroacetylated. ^eTMSOTf was used instead of HBF₄OEt₂ and the reaction was carried out under an inert atmosphere with dry MeCN. ^f0.90 equiv. 1 was used. ^gSelectivity 16:1, isolated yield of major isomer. OTf, triflate; TMS, trimethylsilyl.

- ✓ A large substrate scope (electron-rich ~ electron-deficient arenes)
- ✓ High site-selectivity (R = Et, p:o>500:1, p:m>200:1)
- ✓ Monofunctionalization due to an electron-deficient sulfonium group
- ✓ Not sensitive to O₂ and traces of H₂O
- ✓ Stable thianthrenium salts

Application -1- cross-coupling

Previous cross-coupling:

Arylalkyl sulfonium salts were not tolerant of nucleophiles.

Liebeskind, L. S. et al., J. Am. Chem. Soc. 1997, 119, 12376.

Yorimitsu, H. et al., ACS Catal. 2018, 8, 579.

This work: Pd-catalyzed cross-coupling

- ✓ More stable structure
- ✓ More resistant to nucleophiles
- ✓ Faster oxidative addition reactivity than ArBr and ArOTf
 → Chemoselectivity

Application -1- cross-coupling

Chemoselectivity

Application -2- photoredox catalysis

Reaction mechanism

- Radical cations : supported by EPR
- Electrochemical oxidation gave the similar result.
- The Hammet analysis supports a cationic intermediate and ρ = -11 indicates a late TS.
- The step of dication adduct formation is uncertain.

Application – various functionalization

Ritter et al., *Nature*. **2019**, *567*, 223. *Nature* **2021**, *600*, 444. *J. Am. Chem. Soc.* **2021**, *143*, 7909. *Synlett.* **2022**, *33*, 339.

Contents

- 1. Introduction of persistent radicals
- 2. Site-selective C-H functionalization by thianthrenation
 - I. Ritter's first work
 - II. Mechanistic insight into site-selectivity
- 3. PTH catalyzed C(sp³)-O formation
- 4. Summary & Perspective

Wang's report

Wang's *para*-selective C-H functionalization using phenoxathiine or thianthrene just several months after Ritter's.

Sulfoxide (TTSO or POSO)
$$Tf_2O$$

$$DCM, -40 °C to rt$$

$$R = Me$$

$$X = S, 97 %, p: o = 95.3 : 1.0$$

$$X = O, 98 %, p: o = 76.8 : 1.0$$

$$X = O, 98 %, p: o = 76.8 : 1.0$$

$$X = O, 98 %, p: o = 76.8 : 1.0$$

- ✓ High para-selective borylation by a transient mediator approach
- ✓ One-pot synthesis
- \times Electron-deficient arenes (X = Cl, Br, CO₂Me, COMe, CF₃)

Wang's mechanistic study

Dication Radical cation Para ortho AG/AH 0.0/0.0 4.7/4.2 0.0/0.0 NPA charge

0.12

0.12

0.79

(Toluene)

What determines high site-selectivity?

- Sulfoxide screening
 - → Steric effect (partially)
- EPR experiment
 - → Radical cation intermediates

However, low concentration didn't afford TM.

What is a real reactive species?

DFT calculations

→ A larger free energy difference between *ortho* and *para* intermediates was detected in case of dications.

Wang's mechanistic study

(c) Proposed mechanism for para-selective sulfonium salts formation

Mechanism

- 1. Heterolysis of sulfide ditriflate
- 2. Highly electrophilic dication reacts with toluene
- 3. Deprotonation

Para-selectivity

- High electrophilicity of the sulfide dications
- The favorable para-intermediate minimizes the electrostatic repulsions.

Ritter's mechanistic study

2021 Ritter unraveled the origin of the site-selectivity.

Ritter, T. et al., J. Am. Chem. Soc. 2021, 143, 16041.

Different thianthrenation protocols

entry	conditions	proposed	p/o	p/m
1	TTO, TFAA, HBF ₄ ·OEt ₂ , MeCN	TT ²⁺ /TT ⁺ -TFA	106	132
2	TTO, neat H ₂ SO ₄	TT^{2+}	122	132
3	[TT ^{•+}]BF₄, MeCN	$TT^{\bullet+}$	114	127
4	TTO, TFAOTf, K ₂ CO ₃ , MeCN	TT+-TFA	75	125

Different conditions gave the similar selectivity.

→ The selectivity is determined at the step after formation of a common Wheland intermediate.

Source of *p/m* & *p/o* selectivity

reaction	ρ	p/m in toluene	p/o in toluene
bromination	-12	220	2
${\it thianthrenation}^b$	-11	206	144
chlorination	-9	82	0.66
acetylation	-9	54	162
nitration	-6	17	0.54
electroiodination	-6	12	1
mercuration	-4	5	2
alkylation	-2	1.8	1.7

The p/m selectivity is determined by the electronic effect and predicted by the Hammet value ρ , but the p/o selectivity is not in the case.

^aData obtained from refs 5 and 86–88. ^bData for reactions with TFTO.

Source of *p/m* & *p/o* selectivity

Different *p*/*o* selectivity between bromination and thianthrenation

→ The size of a substituent...steric effect

Intermolecular competition experiment

Selectivity of toluene over mesitylene + KIE>1

→ Deprotonation is slower at the mesitylene-based Wheland intermediate.

Computational study

- The TSs of deprotonation are early TS, which are more SM-like.
- The high energy differences rationalize the exquisite para-selectivity.
- The reversible interconversion enables all o, m-I to generate p-I.

Comparison of other sulfoxides

DPS'+

 TFT, TT, and PXT shows reversible 1e⁻ oxidation, which means persistent radical formation and a primary KIE, which means reversible Wheland int. formation.

KIE =

o/m/p-l

2.4-2.7

Guideline 1

The energy of Wheland intermediates

Energy of Wheland intermediates
Halogenation : electronic control

Borylation : steric control

Thianthrenation: electronic & steric control

→ High *para*-selectivity

D) thianthrenation

Me

H

TT

H

Sds

KIE > 1

$$\rho$$
 <<1

 ρ <<1

 ρ > 100:1

 ρ > 100:1

Guideline 2

TS resembles Wheland int. in the sds : Late TS for electrophilic addition or early TS for deprotonation

- Thianthrenation: The early TS in the selectivity-determining step resembles Wheland intermediates.
 - → The energy difference in Wheland int. contributes to selectivity.

Guideline 3

Reversible electrophilic addition

p/m = 54 : 1p/o = 162 : 1

Contents

- 1. Introduction of persistent radicals
- 2. Site-selective C-H functionalization by thianthrenation
 - I. Ritter's first work
 - II. Mechanistic insight into site-selectivity
- 3. PTH catalyzed C(sp³)-O formation
- 4. Summary & Perspective

Photoredox-catalyzed C(sp³)-O formation

Ohmiya, H. et al., J. Am. Chem. Soc. 2020, 142, 1211.

C(sp³)-X-C(sp³) formation

Conventional methods: Alkylheteroatom nucleophile & alkyl electrophile

- Nucleophilic substitution
 - \times Functional group tolerance (S_N2, S_N1)
 - \times Not tolerant of sterically demanding substrates (S_N2)
- Transition-metal catalysis
 - × Slow oxidative addition
 - × β-hydride elimination instead of reductive elimination

This work

Radical-polar crossover (RPC) reaction

$$R^{\bullet} \xrightarrow{-e^{-}} R^{\oplus}$$

RPC reaction

- TTF as an RPC catalyst
- Radical to cation by trapping TTF⁻⁺
- Persistent radical effect

Towards $C(sp^3)$ -O- $C(sp^3)$ formation,

via

- × Low reducing ability of TTF: $E^{ox} = -0.2 \text{ V}$ vs SCE in MeCN
- → Strong redox property of organosulfide RPC catalyst by visible light excitation

J. Chem. Soc., Chem. Commun. 1993, 295.

Hypothesis

- Excitation in the UV-vis area (λ_{max} = 320 nm)
- High reduction potential (Ar = Ph, $E_{1/2}$ *= 2.1 V vs SCE)
- Persistent radical cation

Alkylsulfonium salt is formed from alkyl radical and PTH radical cation.

Optimization

Entry	Change from standard conditions	Yield of 3aa $(\%)^b$
1	none	81
2	PTH2 instead of PTH1	26
3	PTH3 instead of PTH1	54
4	PTH4 instead of PTH1	40
5	PTH5 instead of PTH1	86
6	PTH6 instead of PTH1	19
7	POX1 instead of PTH1	40
8	Ir(ppy) ₃ (2 mol%) instead of PTH1	5
9	$Ru(bpy)_3(PF_6)_2$ (2 mol%) instead of PTH1 and $LiBF_4$	8
10	Ir[dF(CF ₃)ppy] ₂ (dtbbpy)PF ₆ (2 mol%) instead of PTH1 and LiBF ₄	1

^aReaction was carried out with 1a (0.6 mmol), 2a (0.2 mmol), PTH1 (0.02 mmol), and LiBF₄ (0.02 mmol) in MeCN (0.6 mL) under blue LED irradiation for 24 h. ^{b1}H NMR yield based on 2a.

- The extension of π-conjugation or the introduction of an electron-deficient group
 - → PTH1 is the best photocatalyst.
- Ir or Ru photocatalyst gave lower yield.

Substrate scope

- ✓ Access to sterically hindered ether compounds
- ✓ Tertiary benzyl groups afforded high yield due to the stabilization of benzyl carbocations.

Substrate scope

^aReaction was carried out with 1a (0.6 mmol), 2a (0.2 mmol), PTH1 (0.02 mmol), and LiBF₄ (0.02 mmol) in MeCN (0.6 mL) under blue LED irradiation for 24 h. ^bbThe color of light was changed. ^cPTH6 (0.02 mmol) was used instead of PTH1. ^dPTH3 (0.02 mmol) was used instead of PTH1. ^ePTH4 (0.02 mmol) was used instead of PTH1. ^f12 h. ^gReaction was carried out with 2 (0.2 mmol), PTH1 (0.02 mmol), water (10 μL), and LiBF₄ (0.02 mmol) in acetone (0.8 mL) under blue LED irradiation for 24 h.

- ✓ An alkyl halide and olefin were compatible.
- ✓ Acetonide- and Boc- protecting group were not removed.
- ✓ Chemoselectivity of the primary alcohol
- ✓ Water, amines, and thiol were also used as nucleophiles.

Mechanistic Study

The intermediate

A. TSN OH OO OBN DH1 (10 mol %) LiBF₄ (10 mol %) MeCN, 16 h Blue LED H OBn 3ar, 33%

1,2-Hydride shift

1,2-Carbocation rearrangement

The intermediacy of alkylsulfonium or free carbocation

Radica-radical coupling or single electron oxidation

- Lower yield when PC without S was used
- PTH⁻⁺ derivatives E_{1/2} =0.42-1.02 V vs SCE
 *Bu E_{1/2}°x =0.09 V vs SCE
- PRE for oxidation of transient alkyl radical

Contents

- 1. Introduction of persistent radicals
- 2. Site-selective C-H functionalization by thianthrenation
 - I. Ritter's first work
 - II. Mechanistic insight into site-selectivity
- 3. PTH catalyzed C(sp³)-O formation
- 4. Summary

Summary

- Ritter's work: High site-selective C-H functionalization
 - ✓ Stability of the persistent radical enables the reversible interconversion.

- Ohmiya's work: Photoredox-catalyzed C(sp³)-O formation
 - ✓ The persistent radical selectively oxidizes a transient alkyl radical.
 - ✓ Extended π-conjugation renders PTH a photoredox catalyst.

Perspective

In order to make C-H thianthrenation more convenient, it is important to realize the reactions. with **thianthrene catalysts**

TT to TT⁺⁺ = 1.21 V vs SCE TT⁺⁺ to TT⁺⁺ = 1.74 V vs SCE

Ritter, T. et al., Angew. Chem. Int. Ed. **2020**, 59, 5626.

Strategy

- 2e⁻ oxidation of thianthrene by external strong oxidants
- Thianthrene derivative itself as PC