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1. Introduction

Secondary metabolites




Secondary metabolites

ICompounds created by bacteria, fungi, plants, etc.

|Usually, they are not directly involved in normal growth, development,
or reproduction. (Vaishnav and Demain 2011)

IThey have multifarious structure, and bioactivity.




Structural diversity and classification
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Natural products as a drug

INPs have been continuously exploited for drug discovery.
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Biologically relevant chemical space

a Relative number of products

lIn drug discovery, biologically
relevant chemical space is more
important than just a library size.

Natural product
@ universe
~16x10* compounds

INPs have wide range of
pharmacophores, and high
degree of stereochemistry.

b Choosing biologically relevant chemical space

Available compounds
~22 million Biologically
relevant

I'The chemodiversity of NPs is

much larger than those of _\ BB  Neusd
synthetic compounds. (Feher [screeningset i [scrmening et "\ [
and Schmidt, 2003) ormien]

Synthetic compounds Natural compounds



Number and diversity of new NPs

IHowever, number and diversity of new NPs seem to reached a plateau.

= Method to discover structurally new NPs, or artificially diversify NPs
are needed.
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2. Current progress of the field

*Genome mining approach




Genome mining approach

|Over the past decade many biosynthetic gene clusters (BGCs) have
been uncovered.

IHowever, most gene clusters are silent under laboratory conditions,
presenting a bottleneck for natural product discovery.

|Bio-informatics-based analysis predicted that several cryptic BGCs in
many species are likely to encode products with novel structures.




Genome mining approach

IThus, the activation of silent gene clusters will become a new
direction of natural product discovery.
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Pleiotropic methods
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Pathway-specific methods
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Example of epigenetic approach




Pioneer work in epigenetic perturbation approach

|Bok and Keller found LeaA, which activate K Soroen @D = Wliadeny oy
the expression of transcription factor aflR. /
Protein kinase A ({1

RasA

|By detailed analysis, LeaA was found to be

Global regulation factor conserved
in filamentous fungi.

“Concerned to regulation of gene g
- \
ex p ression. Stengmatocystm Lovastatm Pemcnllln Gliotoxin Hyphal pigments
- Bearing binding site of S-adenosyl n.ﬁi% g Oy _ﬁ@} j%; ‘;é;o._
methionine.

Polyketide

"Localizes in nuclei.

= | eaA = regulating expression by PTM??



Pioneer work in epigenetic perturbation approach

|Although farther research elucidated that LeaA does not function as
methylation enzyme, Bok’s work connected the secondary metabolism
and epigenetic regulation.

|Another basis : Many of the BGCs of filamentous fungi are located near
the telomere (Nierman et al., 2005)(Rehmeyer et al., 2006).

I'To confirm the relation, Keller’s group conducted further research.



Pioneer work in epigenetic perturbation approach
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Pioneer work in epigenetic perturbation approach

IThey created isogenic lines losing one or more of hdaA, hosB, hstA. (HDACs)

'In AhdaA, production of ST and PN increased, but not TR.

A ST WT AhdaA




Pioneer work in epigenetic perturbation approach

IThey picked representative genes to see the change in mRNA production.
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Pioneer work in epigenetic perturbation approach

I'To see the generality of HDAC regulation, A.alternate and P.expansum was
treated with HDAC inhibitor TSA.
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Genetic engineering approach

/IBok et al., 2009 ~
Induced loss-of-function CclA (involved in H3K methylation) in A. nidulans
= Activation of cryptic BGCs, and generation of several metabolites which

was not previously known to be produced by A. nidulans Y

cclA and hdaA are highly conserved in filamentous fungi

= These methods are applicable to various fungi.

e.g.: Calcarisporium arbuscula(Mao et al., 2015)
Pestalotiopsis fici(Wu et al., 2016)



Genetic engineering approach

IHenke et al., 2016

PTM enzymes required for the survival is impossible to delete.

= Replaced the promoter with xylose promoter
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Chemical approach

Biosynthesis of ‘Silant’ Secondary Metabolites
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Chemical approach

/IHenrikson et al., 2008 ~
Treated Aspergillus niger with the same HDAC inhibitor as Williams

= Discovered novel metabolite with unprecedented structure.

- /

|Asai et al., 2015
4 )

Combined the chemical approach with semi-synthetic approach to produce novel
compound with bioactivity.

- /




Limitations of epigenetic perturbation approach

|Application of genetic engineering approach is limited to few strains.

*Genome information, and establishment of transformation method is
necessary.

IPredictive change is difficult using pleiotropic approach, such as HDAC
inhibition by drug.

IBGCs that are not strongly regulated by epigenetic regulation are difficult to
upregulate by this method.



*Enzyme engineering approach




Nonribosomal peptides (NRPs)

IStructure of NRPs are made by amino acids, including nonproteinogenic
amino acids.
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Nonribosomal peptides (NRPs)

INRPs are assembled by NRP synthetases, which consist of adenylation
domain and peptidyl carrier protein, and other domains for modification.
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Nonribosomal peptides (NRPs)

INRPs get various modification including reduction, oxidation, cyclization,
epimerization, methylation, etc.

IEnzymes are modularized.

ISometimes NRPS and PKS are combined to form NRP-PKs.

KS

NRP-PK
(From : https://www.scripps.edu/shen/researchoverview/research2.html)



Engineering adenylation domain of NRPS

IMechanism of substrate recognition of A domain
have been extensively studied (Kudo et al., 2018).

A10 5 0 A1l
*A1(D235) and A10(K517) recognize the amino  Wsmo~i, L i, o A
acids, including D-a-AA and B-AA A6 Aagy—cr, | Alags A2
: : : A7 as | L
A2~ A9 recognize the sidechains. Nﬂaza—CHSThr??B?:; A :apao A8
It is now possible to predict the selectivity of the a5 i~ HS‘;;C"S”'&:"
protein by genome sequence. ren

IRecently, some study on rational redesign or
directed evolution of A-domain have been done.



Engineering adenylation domain of NRPS

IThirlway et al., 2012

* Rationally redesigned module 10 A-domain, CdaPS3, of calcium-dependent
antibiotic to change the selectivity.

*Lys278GIn at A4 : L-Glu (or 3-methyl-L-Glu) =» 3-methyl-L-GIn

By mimicking the other A-domains which recognize Gln.
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Engineering adenylation domain of NRPS

IKries et al., 2014
* Modified TycA (Phe specific) to recognize O-

. A10 0 A1l
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Engineering adenylation domain of NRPS

INiquille et al., 2018 changed the )
specificity from a-amino acid to B-amino
acid by high-throughput assay.
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Engineering adenylation domain of NRPS

lIn the paper, TycA, was used to enable
assay by fluorescence.

I'Those strains were screened by FACS.
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Engineering adenylation domam of NRPS
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Engineering adenylation domam of NRPS
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Engineering adenylation domain of NRPS

|Authors confirmed that modified A domain correctly work in cooperation
with other NRPSs.

TycAgr (120 kDa) GrsB (510 kDa)




Limitations

IScope is limited to structurally conserved changes.

I'The change in A domain specificity may result in unexpected effects on
overall NRPS function.(Uguru et al., 2004)




3. Summary




Summary

IDiversity of natural products is worth exploiting for drug discovery,
biological tool, and so on.

IHowever, discovery of brand-new NP is becoming difficult.
I'To solve this problem, some approaches are possible, including
" Epigenetically activating silenced BGC.

Engineering enzymes to alter the specificity.



Current issues and future

|Epigenetically activating silenced BGC.
*Need Genome information, and establishment of transformation method.
* Or, analysis of the product may be complicated.

=The method without genetic transformation to activate specific gene cluster
must be a breakthrough.

|Engineering enzymes to alter the specificity.
Despite the great effort, scope is limited to structurally conserved changes.
= Using artificial catalyst to activate desired amino acid may be a solution.

*The modification may result in unexpected overall effect.
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Appendix : The breakdown of all approved drug
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N : NPs, NB : Botanical, ND : NP derivatives, S : synthetic, S* : Synthetic (NP pharmacophore)
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Appendix : Morgan fingerprint

Fingerprint calculated using Morgan Algorithm
(Extended-Connentivity Fingerprints)
For detail see the papers listed below.

Morgan, J. Chem. Doc., 1965, 5. 107-113.
Rogers and Hahn, J. Chem. Inf. Model., 2010, 50, 742-754.

From : http://chembioinfo.com/2011/10/30/revisiting-molecular-hashed-fingerprints/



Appendix : Tanimoto scoring

Similarity score of two bitmaps, defined

by right formula.
xy-'gh bit of X T,(X,Y) = =T
Ilt IT O S ) E‘L(XE VE)

A 'V : bitwise operator And / Or.




Appendix : Pleiotropic methods

|Variation in growth conditions

Approach:  Just change the growth condition
(co-culture, temperature, pH, etc.)

Advantage : Easy to conduct.

Limitations : -Limited by the range of condition
under which organism will grow.

“Difficult to predict the effect of the
change.

Novel metabolite

e.g. : Aspoquinolons, Aspernidines, ClosthioamideA, etc. Example of the approach.



Appendix : Pleiotropic methods

|Engineering the transcriptional and translational A PR o
maChlnery Selection on = “
. . rifampicin

Approach:  Induce mutation in RNA polymerase i

and ribosomal proteins to cause

upregulation of BGC expression.

—Lo e e e—

Limitations:  Only small number of antibiotics trigger BGC operon

changes in a restricted group of bacteria.

A 4
Novel metabolite

e.g. : Piperidamycins, Coelimycins



Appendix : Pleiotropic methods

Manipulating global regulators

Approach:  Change the expression levels of pleiotropic transcriptional regulator
of BGCs.

Advantage : Manipulation of single regulator may result in more than one pathway
and may lead to the discovery of multiple NPs.

Limitations : Only few such regulators are known.

e.g. : Terrequinone (A.nidulans), ClosthioamidesB-H, Pulvomycin (S.flavopersicus)



Appendix : Pleiotropic methods

. . . CH, CH, CH,
|Epigenetic perturbation - &i -
. el Histone — v~ A "y ,f/
Approach:  Use mutagenesis or inhibitors to I/ /],
DNA S& ¢ ?

trigger global chromatin structure change.

Methylated chromatin

Limitations : =Sites at which acetylation or methylation Silenced BGC
may be altered are limited by accessibility.
HDAC HAT
Not yet scope for predictive change. HME] | HOM

Ac Ac Ac
Ac Ac Ac
i hamncti e o

Acetylated chromatin
Activated BGC

e.g. : Emodin (A.nidulans), Cladochromes, NygeroneA



Appendix : Readily inducible promoter

" Tet-ON system " Tet-OFF system
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(From : http://www.takara-bio.co.jp/goods/catalog/pdf/tet.pdf)



Appendix : Pathway-specific methods

Manipulating pathway specific regulators

Approach : Identification and overexpression or deletion of pathway-specific regulators.
Advantage : Precise activation of specific BGC. Unambiguous identification of the products.

Limitations : Transcription factor should be identifiable, easy to manipulate and the
perturbation should not complicate identification of the target metabolites.

e.g. : Aspyridones, Asperfuranone, Stambiomycins, Gaburedins, Burkholdacs, etc.
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— Ly~ e
Activator gene L . J
Repressor gene ' | Silent BGC
Silent BGC . )
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Metabol promoter -~ SRR
etabolic etabolic
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Appendix : Pathway-specific methods

Reporter-guided mutant selection

Approach:  Couple target BGC to promoter-reporter system, and induce genome
scale random mutagenesis.

Advantage : Pleiotropic approach combined with pathway-specific detection of
visualizing wonted mutant.

Limitations : Require cloning of promoter sequences. Only single example.

4 ~N L,
D) —|1ODIDDY | £ -8
e.g. : Gaudimycin D, E e REOVB/ P e SO v O

Construction of transformants containing an

Target promoter Reporter-guided mutant selection

ectopically integrated reporter plasmid



Appendix : Pathway-specific methods

|Refactoring
Approach:  Replace the promoter of the silent BGC with G i -

constitutive, or readily inducible promoter . Wild type -
] ] ] @AlT)KS @ ACP
Advantage : Afford precisely controlled activation of the

pathway of interest.

Limitations : =Natural promoter must be identified.
& cor - m—

Promoter Ls

*The BGC must be amenable to genetic
manipulation

e.g. :Burkholderic acid, 6-epialteramideA/B



Appendix : Pathway-specific methods

| Hete rOIOgous exprESSion Genomes orietagenomes Sequence/dgenomes orm@enomes
Approach : Expression of an entire BGCin a — —— e —
hete r0|0gous host Digestedginomic DNA Digestedginomic DNA DNAfrTments
PCR product with
- Often combined with refactoring. O O “°"“°'°i"””“ O
Advantage : Simplifies the identification of Direct ssseenbly
. (Gibson/SLIC/CPEC,
m eta b O I Ite S . Random cloning Direct cloning Dﬁﬁlﬁgfr:é?ér)
Limitations: BGCs are usually difficult to handle N i 4
because of the size of the cluster. O
Heterologous host
OH +
e.g. : Terferol analogues, Epiisozizaene, Acermitilol, % A
Haloduracin ﬁ o Novel natural products



Appendix : LeaA
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Appendix : Asai et al. 2015
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Appendix : Asai et al. 2015
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Appendix : A domain structural analysis

Table 1 Structural analysis of amino acid adenylation enzymes

Amino acid substrate Protein Final natural products Ligands, note PDB ID" Year Reference Amino acid substrate Protein Final nawral products Ligands, note FDE D" Year HReference
Proteinogenic L-a-amino
acids Modified a-amino acids:
t-at-Phe PheA in GrsA Gramicidin L-a-phenylalanine and IAMU 1997 [19] (25,35)-p-methyl-L- SIgN1 Streptolydigin AMP-cpp, ax a-amino 4GRS 2013 [39)
AMP uspartic acid ucids
t-a-Phe MeyG Microcystin 1-Phe-AMP, A-CP 4ROM 2015 [99) N-cis-anhydromeva- SidNA3 Fungul siderophore Fungal adenylation ATE 2010 [56)
didomain lonyl-N-hydroxy- enzyme
L-a-Arg/Tyr ApnA-Al Anabenopeptin Arg/Tyr adenylate 4D57/56 2015 [48] L-omithine
L-t-Leu SrfA-C Surfactin None, C-A-T-TE full 2VSQ 2008 [101) Norcoronamic acid ThioS(A MA ) Thiocoraline MT domain insertion SWMM 2018 [77)
module (and L-Val)* lype
L-at-Val PAI211 Unknown Valine-adenosine vinyl-  4DGS, 4DGY 2012 [72) 2-aminobutyric acid CytCl Cytotrienin Only pdb data. L-valine  3VNR, 3VNQ, 3VNS 2007 [105])
sulfonamide, A-CP is the best substrate
L-a-Val LgrA Lincar gramicidin Val-NH-phospho- SESS 2016 [87) f-amino acids:
pantctheine attached to (25.35)-p-methyl-.-  VinN Vicenistatin f-methyl-L-aspartic acid  3WVS 2014 (73]
the PCP domuain, F-A- aspartic acid
EF ieios i 3§)-3-aminobutyric  IdnL1 Incedn 3 ABA-adenyla s 2017 (17
Gly AlmE LPS modification Gly-AMP 40X1 2014 [38) ¢ ;c’i"i"‘“'"“ e . . L Q 2007 1)
v - AT a2
Gly AB04 Unknows (,:'il‘lmn‘i 3:':: CATTE 42X 2016 [23) J-aminononanoic acid  CmiS6 Cremimycin None sup 2017 [17)
wn ; X G 2 .
\-Ser EntF Enierobactin Ser-AVS, C-AT-TE full  ST3D 2016 ()71  (SrP-phenylalanine  engincered TycA PRACAMS (it SN2 ol L
module and with MbtH adenosine)
L-a-The Thel Chloro The The and ATP, Th-AMP  SN9 W, SNOX 2017 {90] Others
Nonproteinogenic amino scids Anthranilic acid AuaEll Aurachin A;?lhrfmiluyl-AMP‘ CoA 4WV3 2016 [43)
D--amino acids 2, e
p-Ala DItA v-alanylation of p-Ala-AMP IDHV 2008 [25)126)

lipoteichoic acid

[114)




Appendix : fluorescence activated cell sorting (FACS)

ICells are arranged in line, and analyzed by s ——
laser. ¥
IDrop containing target particle which satisfy :

. . . Laser Detectors
the criteria is charged. - . |
IThe drops are deflected by charged plate, mpgg;n;m_:é .
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