Bayesian Optimization for the Exploration of Reaction Conditions

Literature seminar M2 Yu Irie

2023/9/28 (Thu)

Optimization of chemical reaction

>10⁵ configurations!!

In typical laboratory, time and materials are limited...

- Scour chemical literature for similar reactions
 - > Experience
 - Mechanistic understanding

• • •

Reaction optimization in machine learning

- > Automated approaches to algorithm optimization
 - Bayesian optimization
 - ✓ High-quality configurations in fewer evaluations

Gaussian process

Acquisition function

E. Brochu, V. M. Cora, N. de Freitas, https://doi.org/10.48550/arXiv.1012.2599

Bayesian optimization

- ✓ Find the objective function
- ✓ Uncertainty is gradually minimized
- ✓ Where to observe next is determined automatically

Bayesian optimization

- Application to diverse search spaces
- Selection of multiple experiments in parallel
 - Optimization of chemical processes

Table of contents

- 1. BO as a tool for reaction optimization
 - 1. Introduction
 - 2. Model optimization
 - 3. Performance benchmarking (BO vs. chemists) and Applications
- 2. Optimizing BO to find general reaction conditions
 - 1. Introduction
 - 2. Data-guided down-selection, experiments and model optimization
 - 3. Optimization and quantification
- 3. Summary

Table of contents

- 1. BO as a tool for reaction optimization
 - 1. Introduction
 - 2. Model optimization
 - 3. Performance benchmarking (BO vs. chemists) and Applications
- 2. Optimizing BO to find general reaction conditions
 - 1. Introduction
 - 2. Data-guided down-selection, experiments and model optimization
 - 3. Optimization and quantification
- 3. Summary

Application to chemical reactions

B. J. Shields, J. Stevens, J. Li, M. Parasram, F. Damani, J. I. M. Alvarado, J. M. Janey, R. P. Adams, A. G. Doyle, *Nature* **2021**, *590*, 89–96.

Application to chemical reactions

- 1. Application to typical batch chemistry
- 2. General-purpose software platforms
- 3. Systematic comparisons to the performance of chemists

Designing the next experiment

Analysis

Acceleration of the optimization of synthetic reactions

Bayesian optimization (BO)

Table of contents

- 1. BO as a tool for reaction optimization
 - 1. Introduction
 - 2. Model optimization
 - 3. Performance benchmarking (BO vs. chemists) and Applications
- 2. Optimizing BO to find general reaction conditions
 - 1. Introduction
 - 2. Data-guided down-selection, experiments and model optimization
 - 3. Optimization and quantification
- 3. Summary

Tuning of the algorithm components

Training data used to select BO parameters

$$Y = B(OH)_2, BPin, BF_3K$$

$$Y = B(OH)_2, BPin, BPin,$$

Published results of HTE (High Throughput Experiments) of 6 reactions in total were used for model optimization.

Training data used to select BO parameters

S. D. Dreher, A. G. Doyle, *et al. Science* **2018**, *360*, 186–190. R. P. Adams, A. G. Doyle, *et al. Nature* **2021**, *590*, 89–96.

Selection of descriptors

In this report, Density Functional Theory Descriptors was the best.

Contains: global (e.g. LUMO energy and dipole moment)/
local (e.g. atomic NMR shift and charge for labeled atoms)
electronic and global steric (e.g. molar volume) descriptors etc.

Optimization of an acquisition function

✓ utilization of both information and uncertainty to drive optimization

> Pure exploitation

 Could become trapped in local maxima > Pure exploration

May achieve the best global understanding

Balancing exploration and exploitation

Explorer: Better fit, low yield

Exploiter: High yield

Balancing

Expected improvement

Table of contents

- 1. BO as a tool for reaction optimization
 - 1. Introduction
 - 2. Model optimization
 - 3. Performance benchmarking (BO vs. chemists) and Applications
- 2. Optimizing BO to find general reaction conditions
 - 1. Introduction
 - 2. Data-guided down-selection, experiments and model optimization
 - 3. Optimization and quantification
- 3. Summary

Test in a new reaction space

Palladium-catalyzed C-H functionalization

BO vs. human experts (Data collection)

Experiments that were expected to give a satisfactory distribution across the larger search space was selected.

HTE results

Yield (%)

25

Collected experimental results for the entire search space via HTE.

R. P. Adams, A. G. Doyle, et al. Nature **2021**, *590*, 89–96. ₂₁

BO vs. human experts (Game results)

	Optimizer	Humans
Initial choices	random	significantly better selection
Final results	 (the average performance within three batches of five experiments) 	

BO vs. human experts (Game results)

- Best- and worst-case bounds for average human performance Bayesian reaction optimization on average outperformed
 - human experts.

Optimization of a Mitsunobu reaction

- > From 180,000 possible configurations in total...
- ✓ The optimizer quickly surpassed the benchmark result.
- Three distinct sets of reaction conditions (99% yield) were identified in only four rounds of ten experiments.

Optimization of a deoxyfluorination reaction

- From 312,500 possible configurations in total...
- ✓ The optimizer surpassed the benchmark result within three rounds of five experiments.
- ✓ Reaction conditions that produced TM in 69% yield were identified in ten rounds of experiments.

Short summary

Bayesian optimization (BO)

✓ An efficient and solid method to optimize reaction conditions

Table of contents

1. BO as a tool for reaction optimization

- 1. Introduction
- 2. Model optimization
- 3. Performance benchmarking (BO vs. chemists) and Applications

2. Optimizing BO to find general reaction conditions

- 1. Introduction
- 2. Data-guided down-selection, experiments and model optimization
- 3. Optimization and quantification
- 3. Summary

Optimization of general reaction conditions

N. H. Angello, V. Rathore, W. Beker, A. Wołos, E. R. Jira, R. Roszak, T. C. Wu, C. M. Schroeder, A. Aspuru-Guzik, B. A. Grzybowski, M. D. Burke, Science 2022, 378, 399–405.

Importance of general reaction conditions

Automated
synthesis
methods for
peptides, nucleic
acids, and
polysaccharides

Highly general reaction conditions

Automated oligosaccharide synthesis

P. H. Seeberger, et al. Science **2001**, 291, 1523–1527.

Reaction conditions for small organic synthesis

To identify general conditions:
all possible combinations of substrates

× all possible combinations of reaction conditions

Difficult to navigate via standard approaches

(Hetero)aryl Suzuki-Miyaura cross-coupling

A promising method to synthesize heteroaryl molecular fragments: SMC (Suzuki-Miyaura cross-coupling)

> Finding general conditions

 This had been attempted, but failed, to discover them by mining the extensive chemical literature

Overview of the method

- 1. Data-guided matrix down-selection to render the vast search space tractable
- 2. Modified BO to efficiently drive prediction optimization
- 3. Robotic
 experimentation to
 increase throughput,
 precision, and
 reproducibility

Succeeds in identifying general reaction conditions!

Table of contents

- 1. BO as a tool for reaction optimization
 - 1. Introduction
 - 2. Model optimization
 - 3. Performance benchmarking (BO vs. chemists) and Applications
- 2. Optimizing BO to find general reaction conditions
 - 1. Introduction
 - 2. Data-guided down-selection, experiments and model optimization
 - 3. Optimization and quantification
- 3. Summary

Data-guided down-selection of substrates

Data-guided down-selection of conditions

- extent of prior use
- structural diversity
- functional diversity

selected conditions		
catalysts	Pd SPhos G ₄ , Pd(PPh ₃) ₄ ,PdXPhosG ₄ , Pd P(tBu) ₃ G ₄ , Pd PCy ₃ G ₄ , Pd ₂ (dba) ₃ , and Pd(dppf)Cl ₂	
bases	sodium carbonate and potassium phosphate	
temperatures	60° C and 100°C	
solvents	dioxane, toluene, and dimethylformamide, all used in 5:1 mixture with water	

Robotic system for reaction performance

When each reaction was repeated twice, the yields exhibited only $\pm 2\%$ deviation.

One of the key advantages of automated experimentation

Seeding experiments

Catalysts with

- similar functions
- poor performance were eliminated.

528 reactions in total

Uncertainty-minimizing ML for generality

Aim: to maximize the objective function f(c)

$$f(c) = \frac{1}{|S|} \sum\nolimits_{s \in S} y(s,c)$$

C={c}: the set of possible reaction conditions

S = {s}: a set of substrate pairs

y(s,c): reaction yield

- BO: each experiment performed immediately provides information about the objective function
- In this case: determination of f(c) for given conditions requires experiments with every pair of substrates in the S set

Table of contents

- 1. BO as a tool for reaction optimization
 - 1. Introduction
 - 2. Model optimization
 - 3. Performance benchmarking (BO vs. chemists) and Applications
- 2. Optimizing BO to find general reaction conditions
 - 1. Introduction
 - 2. Data-guided down-selection, experiments and model optimization
 - 3. Optimization and quantification
- 3. Summary

Advantages found for model-guided research

- ✓ Apparent efficiency compared to random sampling
- ✓ Uniformly distributed yields over the range of possible values

Yields of reactions the model requested

Exploration of good reactions in the second iteration

Attention shifted toward the "negative examples"

Findings through the overall analysis:

- (i) Relatively good candidate solutions were identified early
- (ii) The model initially tried to look for better-yielding reactions
- (iii) More and more attention was dedicated to decreasing the uncertainty of its estimates as the "loop" progressed

Quantifying generality

B. A. Grzybowski, M. D. Burke, et al. Science 2022, 378, 399–405. 42

Comparison with the reported conditions

ML-discovered general reaction conditions performed substantially better.

Short summary

A nearly impossible challenge of finding general conditions was overcome by ML-assisted approach.

Table of contents

- 1. BO as a tool for reaction optimization
 - 1. Introduction
 - 2. Model optimization
 - 3. Performance benchmarking (BO vs. chemists) and Applications
- 2. Optimizing BO to find general reaction conditions
 - 1. Introduction
 - 2. Data-guided down-selection, experiments and model optimization
 - 3. Optimization and quantification
- 3. Summary

Summary

Bayesian optimization (BO)

✓ Optimization of the reaction conditions using certain substrates utilizing BO

✓ Further modified ML-assisted method to find general conditions applicable to various substrates