Site-selective acylation of complex molecules by 4-pyrrolidinopyridine catalyst

Literature seminar

M1 Yu Irie

2022/8/25 (Thu)

Table of contents

- 1. Introduction
- 2. Site-selective acylation of monosaccharides
- 3. Site-selective acylation of complex molecules
- 4. Application to total syntheses
- 5. Summary

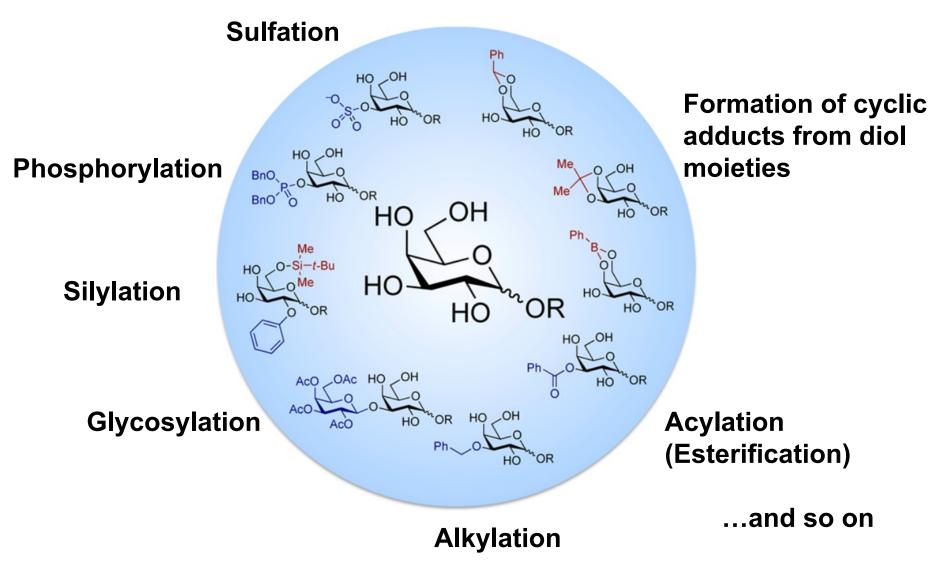
Table of contents

1. Introduction

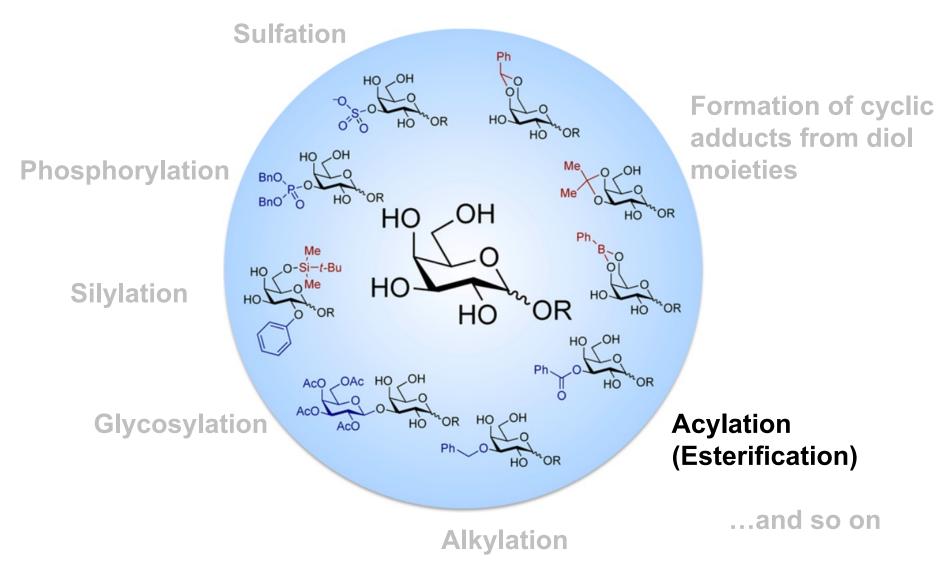
- 2. Site-selective acylation of monosaccharides
- 3. Site-selective acylation of complex molecules
- 4. Application to total syntheses
- 5. Summary

Modification of carbohydrates: Challenges

The key issue: Site-selectivity (several OH groups in one molecule)



Protecting-group strategies


- √ Well developed
- X Requires multi-step synthetic sequences
- X May cause deactivation of the unprotected hydroxyl groups

√ Site-selective modification with minimally protected substrates

Modification of carbohydrates: Precedents

Modification of carbohydrates: Precedents

V. Dimakos, M. S. Taylor, Chem. Rev. 2018, 118, 11457–11517. 6

Examples of selective acylation of OH groups

Carbodiimide / Uronium Salt-Mediated Coupling

S. Jana, S. Mondal, S. S. Kulkarni, Org. Lett. 2017, 19, 1784–1787.

Complexation of OH groups

D. Lee, M. S. Taylor, *J. Am. Chem. Soc.* **2011**, *133*, 3724–3727.

Organocatalyzed acylations (using DMAP catalyst)

...and so on

Examples of selective acylation of OH groups

Carbodiimide- / Uronium Salt-Mediated Coupling

$$\frac{\text{BnO}_2\text{C} \qquad \text{CO}_2\text{H}}{\text{DCC, DMAP}}$$

$$\frac{\text{CH}_2\text{Cl}_2}{\text{0 °C to rt}}$$

$$\frac{\text{BnO}_2\text{C} \qquad \text{OH}}{\text{OH}}$$

S. Jana, S. Mondal, S. S. Kulkarni, *Org. Lett.* **2017**, *19*, 1784–1787.

Complexation of OH groups

D. Lee, M. S. Taylor, *J. Am. Chem. Soc.* **2011**, *133*, 3724–3727.

Organocatalyzed acylations (using DMAP catalyst)

Site-selective acylation using DMAP

Chemoselective acylation of a secondary hydroxyl group in the presence of a primary hydroxyl group

= Difficult because of the steric effects

85% site-selectivity 73% yield

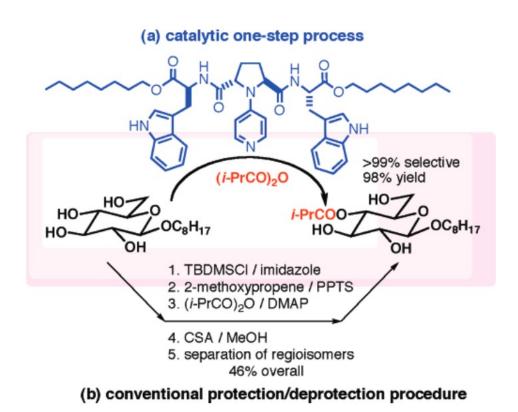
Site-selective acylation of C(4)-OH

octyl α-D-glucopyranoside

$$\begin{array}{c} \text{OH} \\ \text{HO} \\ \xrightarrow{4} \\ \text{OH} \\ \text{OC}_{8} \\ \text{H}_{17} \\ \end{array} \\ \begin{array}{c} \text{O.7 eq. Ac}_{2} \\ \text{O.05 eq. DMAP} \\ \text{K}_{2} \\ \text{CO}_{3}, \\ \text{CHCl}_{3} \\ \text{23 °C, 1 h} \\ \end{array} \\ \begin{array}{c} \text{OH} \\ \text{OH} \\ \text{OC}_{8} \\ \text{H}_{17} \\ \end{array} \\ \begin{array}{c} \text{OCtyl } \\ \text{Cotyl } \\ \text{Omega for a cotyle } \\ \text{OH} \\ \text{OH} \\ \text{OM} \\ \text{OH} \\ \text{OM} \\ \text{OM$$

T. Kurahashi, T. Mizutani, J. Yoshida, J. Chem. Soc. Perkin 1 1999, 465–474.

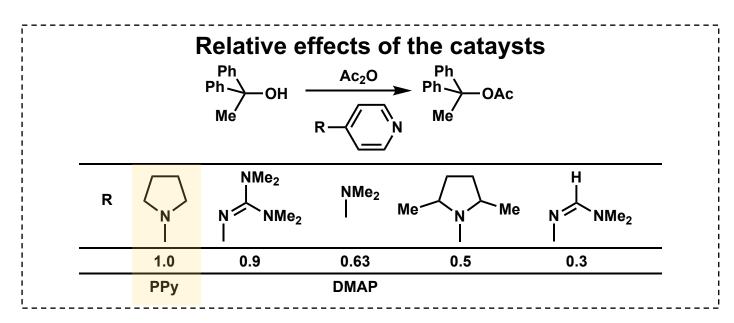
octyl β-D-glucopyranoside


K. S. Griswold, S. J. Miller, *Tetrahedron* **2003**, *59*, 8869–8875.

X Low selectivities

Table of contents

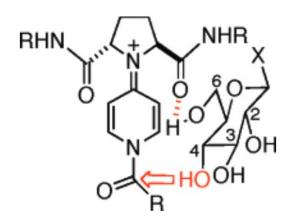
- 1. Introduction
- 2. Site-selective acylation of monosaccharides
- 3. Site-selective acylation of complex molecules
- 4. Application to total syntheses
- 5. Summary


Catalytic site-selective single-step acylation

✓ A newly developed catalyst ✓ High selectivity and high yield
 ✓ An extremely short method

Catalyst design: PPy as an active site

4-pyrrolidinopyridine (PPy): Powerful catalysts for acylation of alcohols



E. F. V. Scriven, Chem. Soc. Rev. 1983, 12, 129-161.

 Reactive intermediate generated from PPy: acylpyridinium ions (such as in the reaction using DMAP).

G. Höfle, W. Steglich, H. Vorbrüggen, Angew. Chem. Int. Ed. Engl. 1978, 17, 569-583.

Proposed transition state

Figure 2. Working hypothesis for selective acylation of a secondary hydroxyl group in the presence of a primary hydroxyl group of a glucose derivative.

- C(6)-OH: Preferentially form an H-bond with an acceptor (e.g. an amide carbonyl group) of the catalyst
- C(2)-OH, C(3)-OH: Additional interactions to fix the conformation of carbohydrate
- → Selective acylation at C(4)-OH

Catalyst design: Functional side chains

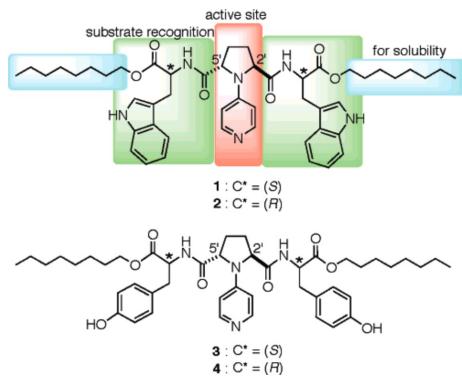
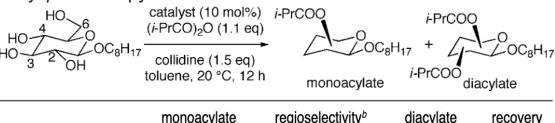


Figure 3. Design and structure of catalysts.

Indole substructure of tryptophan:

Suitable for H-bonding and CH-π interaction with carbohydrates


Octyl esters:

Enhance the solubility of the catalysts in nonpolar solvents

Catalysts 3 and 4: Tyrosine instead of tryptophan

Comparison of catalysts' activity

Table 1. Effects of Catalysts on Regioselectivity of Acylation of Octyl β -D-Glucopyranoside^a

entry	catalyst	monoacylate (%)	regioselectivity ^b 6- <i>O</i> :4- <i>O</i> :3- <i>O</i> :2- <i>O</i>	diacylate (%)	recovery (%)
1	DMAP	47	36:26:26:12	22	31
2	1	84	11:86:3:0	12	2
3	2	71	20:73:7:0	17	9
4	3	60	23:58:19:0	21	14
5	4	80	24:59:16:1	13	6

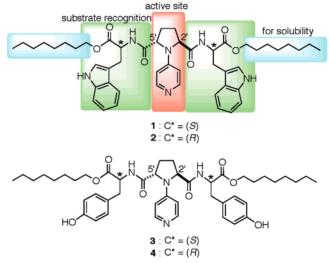


Figure 3. Design and structure of catalysts.

The highest selectivity for 4-O-acylation was observed by using catalyst 1.

^a The reactions were carried out with a substrate concentration of 0.08 M. ^b Regioselectivity (%) among four monoacylates.

Solvent effects

Table 2. Effects of Solvents on Regioselectivity of Acylation of Octyl β -D-Glucopyranoside with $\mathbf{1}^a$

entry	solvent	monoacylate (%)	regioselectivity ^b 6- <i>O</i> :4- <i>O</i> :3- <i>O</i> :2- <i>O</i>	diacylate (%)	recovery (%)
1	toluene	84	11:86:3:0	12	2
2	CHCl ₃	90	4:91:5:0	4	3
3	THF	51	27:51:22:0	28	16
4	DMF	46	63:12:24:1	26	21

^a The reaction in entry 1 and the reactions in entries 2–4 were carried out with a substrate concentration of 0.08 and 0.1 M, respectively. ^b Regioselectivity (%) among four monoacylates.

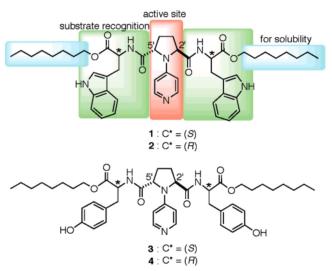


Figure 3. Design and structure of catalysts.

H-bonding > CH- π interaction

Temperature effects and catalyst loading

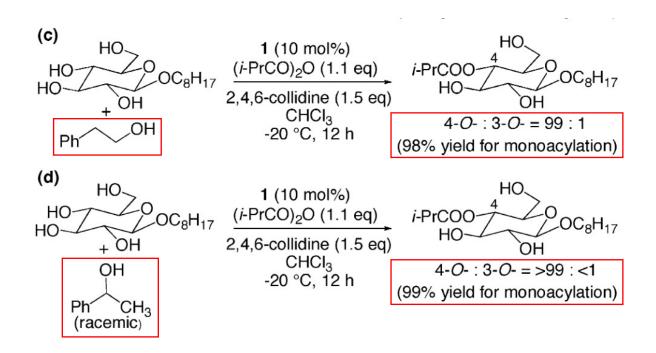
Table 3. Effects of Temperature and Acylating Agents on Regioselectivity of Acylation of Octyl β -D-Glucopyranoside with 1 in CHCl₃^a

		HO 4 HO 3 2	OC ₈ H ₁₇ collidin	1 ((1.1 eq) e (1.5 eq) temp, time	RCOO OC ₈ H	RCOO OC8HA	7	
	mol %	temp		time	monoacylate	regioselectivity ^b	diacylate	recovery
entry	of 1	(°C)	RCOX	(h)	(%)	6- <i>O</i> :4- <i>O</i> :3- <i>O</i> :2- <i>O</i>	(%)	(%)
1	10	20	(i-PrCO) ₂ O	12	90	4:91:5:0	4	3
2	10	0	(i-PrCO) ₂ O	12	97	0:98:2:0	2	0
3	1	0	(i-PrCO) ₂ O	12	97	2:96:2:0	2	1
4	10	-20	(i-PrCO) ₂ O	12	98	0:99:1:0	0	0
5	1	-20	(i-PrCO) ₂ O	24	98	0:99:1:0	0	0
6	10	-50	(i-PrCO) ₂ O	38	98	0:>99:<1:0	0	0
7	1	-20	Ac ₂ O	24	96	0:96:4:0	4	0
8	10	0	<i>i</i> -PrCOCl	48	47	60:35:5:0	13	19

^a The reactions were carried out with a substrate concentration of 0.1 M. ^b Regioselectivity (%) among four monoacylates.

√ Low temperature and high catalyst loading

Mechanistic studies: Use of 6-OMe derivative


Confirmation of the effects of H-bonding between C(6)-OH and the catalyst to the regioselectivity

→ Use 6-OMe derivative

(b)
$$MeO_{6}$$
 $(i\text{-PrCO})_{2}O$ (1.1 eq) $i\text{-PrCOO}_{4}$ $(i\text{-PrCO})_{2}O$ (2.4,6-collidine (1.5 eq) $OC_{8}H_{17}$ OC_{8

➤ H-bonding between C(6)-OH and the catalyst is critical for the regioselective reaction.

Mechanistic studies: Competitive acylation

Site-selective acylation proceeds in an accelerative manner.

Effects of catalyst structures

Table 4. Effects of Catalysts on Regioselectivity of Acylation of Octyl β -D-Glucopyranoside^a

$$\begin{array}{c} \text{HO} \stackrel{4}{\cancel{5}} \stackrel{6}{\cancel{5}} \stackrel{\text{Catalyst (10 mol\%)}}{\cancel{5}} \stackrel{\text{i-PrCOO}}{\cancel{5}} \stackrel{\text{i-PrCOO}}{\cancel{5}}$$

entry	catalyst	monoacylate (%)	regioselectivity ^b 6- <i>O</i> :4- <i>O</i> :3- <i>O</i> :2- <i>O</i>	diacylate (%)	recovery (%)
1	1	97	0:98:2:0	2	0
2	5 ^c	69	14:60:26:0	20	8
3	6 ^c	74	7:65:28:0	15	4
4	7^c	62	13:66:20:1	13	22
5	DMAP	61	33:24:43:0	21	14

^a The reactions were carried out with a substrate concentration of 0.1 M. ^b Regioselectivity (%) among four monoacylates. ^c Catalyst structures:

Indole substructure of

catalyst 1:

- → N-methylindole (entry 2)
- → 2-naphthyl (entry 3)

Two amide carbonyl groups at C(2') and C(5') are essential for the selective acylation at C(4)-OH.

C₂-symmetric structure of the catalyst

Table 4. Effects of Catalysts on Regioselectivity of Acylation of Octyl β -D-Glucopyranoside^a

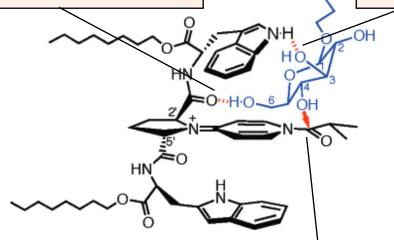
$$\begin{array}{c} \text{HO} \\ \text{HO} \\ \text{J} \\ \text{OO} \\ \text{HO} \\ \text{J} \\ \text{OO} \\ \text{OC}_8 \\ \text{H}_{17} \\ \\ \text{CHCl}_3, \ 0 \ ^{\circ}\text{C}, \ 12 \ h} \\ \end{array} \begin{array}{c} \text{i-PrCOO} \\ \text{i-PrCOO} \\ \text{OC}_8 \\ \text{H}_{17} \\ \text{monoacylate} \\ \end{array} \begin{array}{c} \text{i-PrCOO} \\ \text{i-PrCOO} \\ \text{diacylate} \\ \end{array}$$

entry	catalyst	monoacylate (%)	regioselectivity ^b 6- <i>O</i> :4- <i>O</i> :3- <i>O</i> :2- <i>O</i>	diacylate (%)	recovery (%)
1	1	97	0:98:2:0	2	0
2	5 ^c	69	14:60:26:0	20	8
3	6 ^c	74	7:65:28:0	15	4
4	7^c	62	13:66:20:1	13	22
5	DMAP	61	33:24:43:0	21	14

^a The reactions were carried out with a substrate concentration of 0.1 M. ^b Regioselectivity (%) among four monoacylates. ^c Catalyst structures:

Figure 5. Proposed transition state model for the chemo- and regioselective acylation of octyl β -D-glycopyranoside catalyzed by 1.

With C₂-symmetric structure, approach of the carbohydrate substrate from...

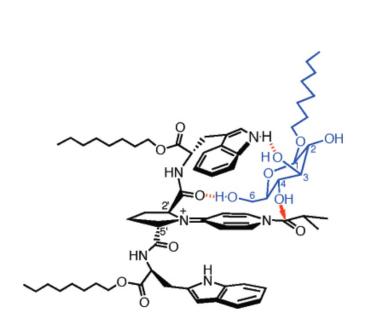

the face of the C(2') side chain = the face of the C(5') side chain

The low selectivity in entry 4 is caused by the nonselective acylation of carbohydrates which approaches from the C(5') side chain.

Proposed transition state model

1) The primary hydroxyl group at C(6) (most reactive) forms H-bond with an amide carbonyl (strongest H-bond acceptor).

2) Indole NH located near C(3)-OH of the carbohydrate forms H-bond.

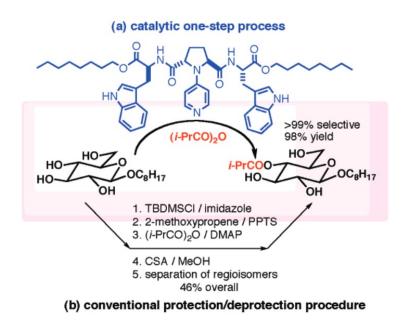

Figure 5. Proposed transition state model for the chemoacylation of octyl β -D-glycopyranoside catalyzed by 1.

3) Substrate is fixed at this conformation via multiple H-bonding, and the acylation proceeds in an accelerative manner at C(4)-OH.

Substrate scope

^a1 mol% of 1 was used. T. Kawabata, et al. J. Am. Chem. Soc. **2007**, 129, 12890–12895. ²⁴

Explanation of the substrate scope results

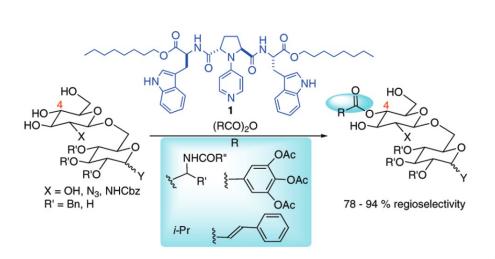


R = iPr : 54% regioselective 75% yield (20 °C, 12 h) Unfavorable interaction between an α-octyloxy substituent and the acylpyridinium ion

R = iPr : 91% regioselective 46% yield (20 °C, 12 h) Axial hydroxy group at C(4)

C(6)-OH selective reaction

Short summary



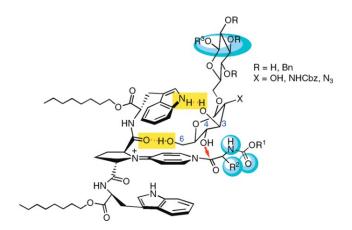

- ✓ Organocatalytic site-selective acylation of monosaccharides
- √ Up to >99% selectivity, 98% yield
- √ Reduction of synthetic steps toward carbohydrates
- > Application to various molecules

Table of contents

- 1. Introduction
- 2. Site-selective acylation of monosaccharides
- 3. Site-selective acylation of complex molecules
- 4. Application to total syntheses
- 5. Summary

Expansion of substrate scope

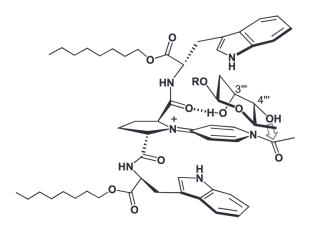


FIGURE 2. Functional group (blue circles) tolerance in molecular recognition via hydrogen bonding (yellow rectangles).

- √ Various acid anhydrides (derived from α-amino acids, cinnamic acid, and gallic acid)
- ✓ Disaccharides with seven free hydroxy groups
- ➤ High functional group tolerance was confirmed.

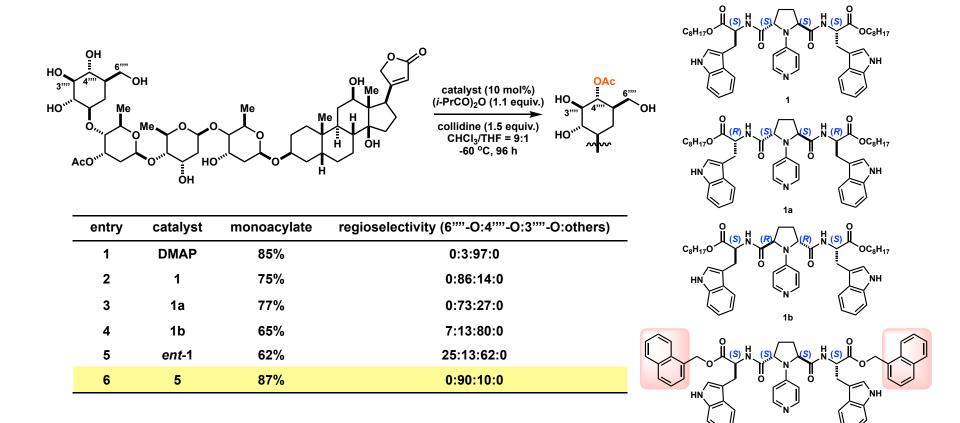
Site-selective acylation of digitoxin

digitoxin

Figure 1. A hypothetical model of transition–state assembly for regioselective acylation of digitoxin (2) (the terminal digitoxose is shown) promoted by catalyst 1.

Table 2Regioselective acylation of **2** with various acid anhydride^a

Entry	R	Regioselectivity ^b 4'''-0:3'''-0:3''-0:3'-0	Yield ^c (%)	Recovery (%)
1	C ₁₁ H ₂₃	>99:0:0:0	92	7
2	C ₁₅ H ₃₁	>99:0:0:0	90	8
3	$C_{21}H_{43}$	>99:0:0:0	96	2
4	$CH_2 = CH - (CH_2)_2$	>99:0:0:0	90	7
5	2-Thiophene	>99:0:0:0	94	4
6	3-Furyl	>99:0:0:0	93	5
7	(E)-Ph-CH=CH	>99:0:0:0	90	6


^a Reactions were carried out with a substrate concentration of 0.02 M.

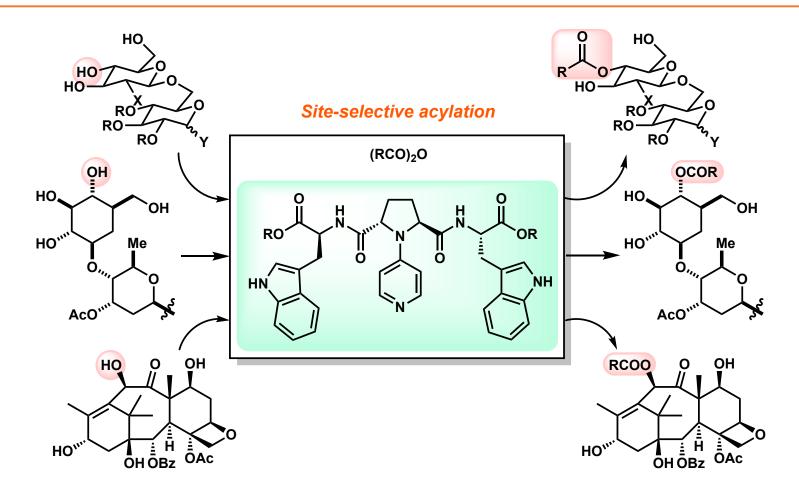
- ✓ Various acid anhydrides (R = Me, i-Pr, Ph and so on)
- √ High C(4") selectivity

^b % Regioselectivity among four monoacylates.

^c Formation of 3'''-O-, 4'''-O-diacylate was negligible in each run.

Site-selective acylation of Lanatoside C

- √ High C(4"") selectivity with catalyst 5
- ✓ Confirmed significance of the chirality at the pyrrolidine ring


Site-selective acylation of 10-Deacetylbaccatin III

Entry	R	Temp.	Time (h)	Monoacylate (%)	Site-selectivity (%)	
1 ^a	<i>i</i> Pr	-20 °C	48	95	62	
2	<i>i</i> Pr	-40 °C	48	89	95	
3	Me	-20 °C	12	99	90	
4	C ₁₁ H ₂₃	-20 °C	120	75	95	
5	C ₆ H ₅	-20 °C	168	84	62	

^aDMAP was used as a catalyst.

✓ Substrate without saccharide moiety

Short summary

- ✓ Site-selective acylation of complex molecules was achieved by using a similar PPy catalyst.
- > Application to total synthesis

Table of contents

- 1. Introduction
- 2. Site-selective acylation of monosaccharides
- 3. Site-selective acylation of complex molecules
- 4. Application to total syntheses
- 5. Summary

Total synthesis of Ellagitannins

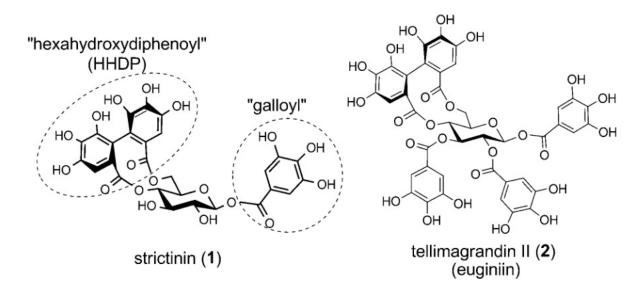
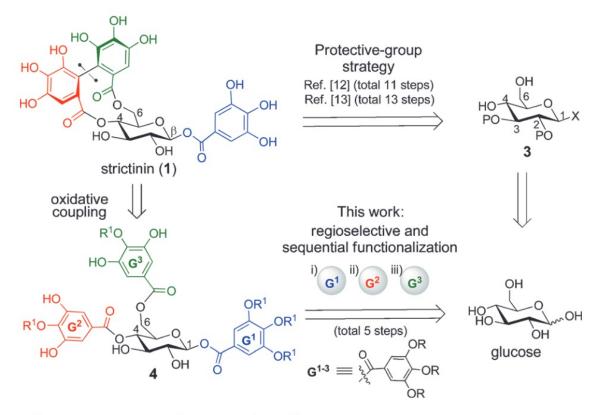



Figure 1. Target ellagitannins.

- Ellagitannins: A large class of plant polyphenols with a wide variety of biological activities
- Strictinin (1) and tellimagrandin II (2): anti HSV, antitumor, anti-influenza virus, antiallergic activities

Retrosynthetic analysis

Scheme 1. Retrosynthetic analysis for strictinin (1). P = protective group. X = activating group for glycosylation.

 Sequential and site-selective introduction of galloyl groups (G¹~G³)

Stereoselective glycosidation

Scheme 2. Direct stereoselective glycosidation.

Highly stereoselective glycosidation under Mitsunobu conditions

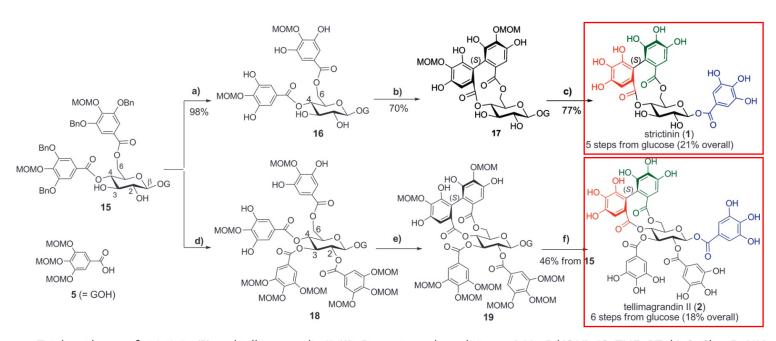
C(4)-OH selective acylation

Table 1: Optimization of organocatalytic regioselective acylation of 6.

Entry	Catalyst	<i>T</i> [°C]	Conc. [м]	Product [%] ^[a]			
				8	9	10	others
1 ^[b]	11	-45	0.03	3	18	6	ca. 0 ^[c]
2 ^[d]	11	20	0.02	0	54	21	6
3	11	-40	0.02	1	83	4	3
4	11	-40	0.04	0	91	6	0
5	ent- 11	-40	0.04	21	3	6	21
6	12	-40	0.04	15	35	10	16
7	ent- 12	-40	0.04	11	14	4	16
8	13	-40	0.04	11	42	15	15

[a] Yields were determined by ^{1}H NMR with 1,3-dinitrobenzene as an internal standard. [b] Run in CHCl₃ in the presence of 1.5 equiv of 2,4,6-collidine. [c] 70% of the starting material was recovered. [d] Run for 24 h.

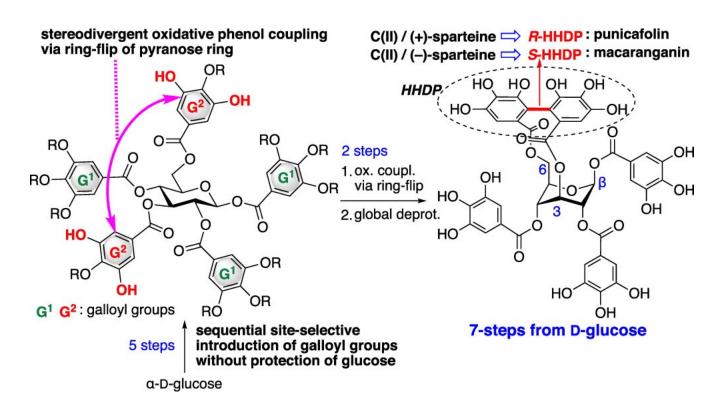
The chirality at the pyrrolidine ring is important.


Site-selective acylation of C(6)-OH

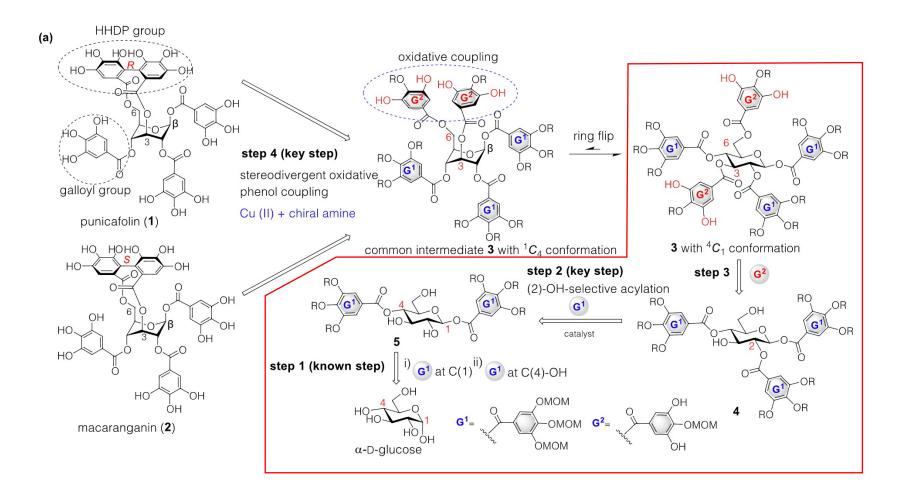
- Site-selective introduction of a galloyl group to C(6)-OH of 9 (C(4)-OH acylated product)
- 14 is generated from anhydride 7 and catalyst 11
- ➤ One-pot reaction

One-pot site-selective diacylation

- 1) Regioselective C(4)-O-galloylation
- 2) Substrate-controlled C(6)-O-galloylation


Final steps of the total synthesis

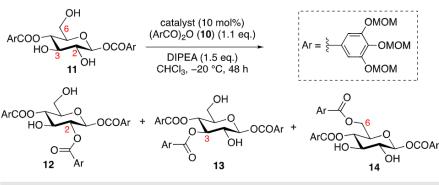
Scheme 4. Total syntheses of strictinin (1) and tellimagrandin II (2). Reagents and conditions: a) H_2 , $Pd(OH)_2/C$, THF, RT; b) $CuCl_2$, $nBuNH_2$, $MeOH/CHCl_3$ (1:1), RT; c) conc. HCl/iPrOH/THF (1:50:50), RT; d) 5, $EDCI\cdot HCl$, DMAP, CH_2Cl_2 , RT and then H_2 , $Pd(OH)_2/C$, THF, RT; e) same as b); f) same as c). THF = tetrahydrofuran, EDCI = 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide.


➤ Total syntheses achieved without using protecting groups for the glucose substrate

Total Syntheses of Punicafolin and Macaranganin

- ✓ Sequential site-selective introduction of the galloyl groups into unprotected D-glucose
- ✓ Stereodivergent construction of the 3,6-HHDP bridge by oxidative phenol coupling

Site-selective acylation by PPy catalyst

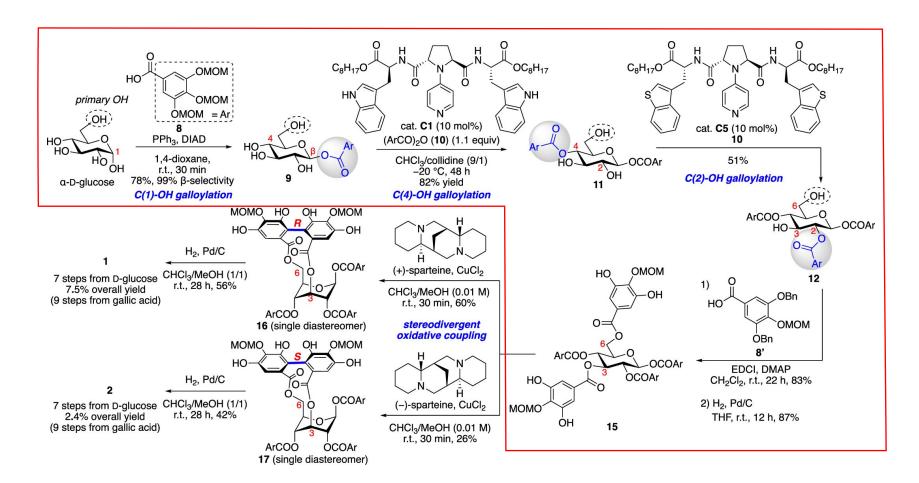


√ Key step: (2)-OH selective acylation

H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, *J. Am. Chem. Soc.* **2021**, *143*, 1428–1434. 42

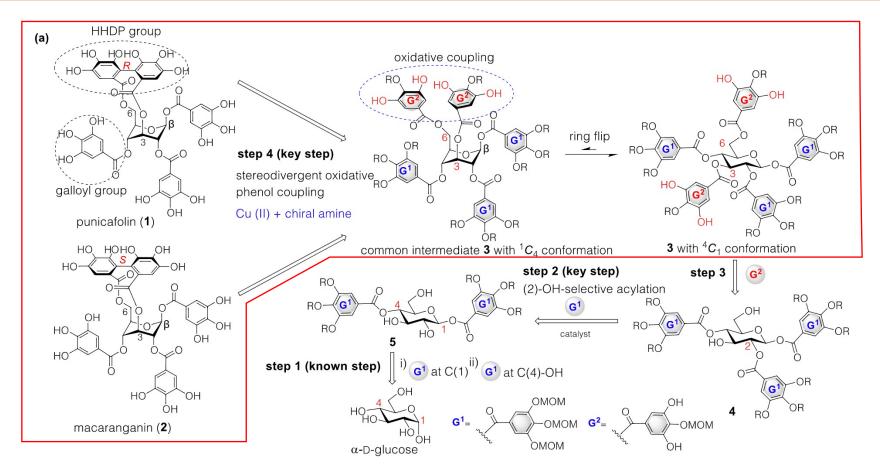
Catalyst screening for the C(2)-OH acylation

Table 1. Catalyst Screening for the C(2)—OH-Selective Introduction of the Third Galloyl Group into 1,4-Digallate 11


		yie	eld (%)	recovery (%)	site-selectivity (%) for C(2)—OH acylation
entry	catalyst	12	13	14	11	12/(12 + 13 + 14)
1	DMAP	44	36	0	10	55
2	C1	32	20	4	24	57
3	C2	23	9	1	48	70
4	ent-C1	37	37	3	13	48
5	ent-C2	21	19	3	36	49
6	C3	22	5	1	49	79
7	C4	13	7	4	37	54
8	C5	42	10	4	30	75
9 ^a	C5	51	13	1	10	78
_						

^aAcid anhydride 10 (2.2 equiv) and DIPEA (3.0 equiv) were used.

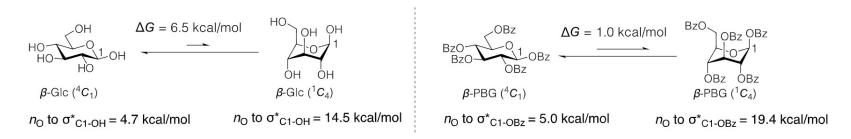
✓ A newly developed catalyst (C5) with a 3-benzothiophenyl group instead of the 3-indolyl group of C2


H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, J. Am. Chem. Soc. 2021, 143, 1428–1434. 43

Sequential introduction of galloyl groups

- 12 was synthesized through sequential, site-selective reactions.
- Condensation of 12 with 8' gave an intermediate 15.

Construction of the 3,6-HHDP bridge

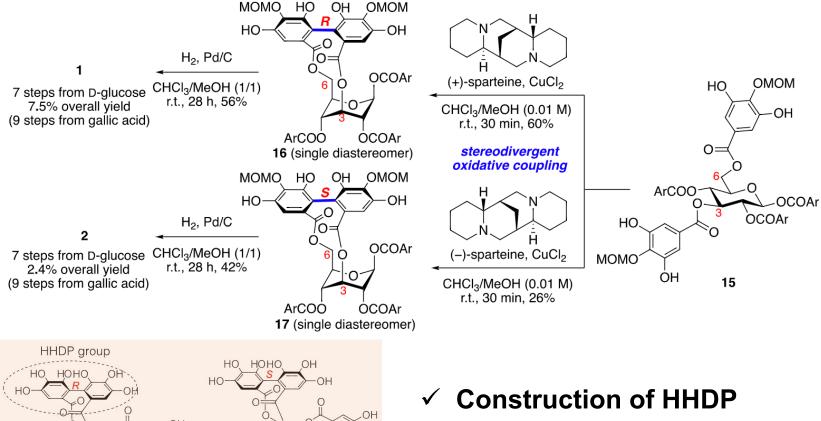


 3,6-HHDP bridge: A less stable axial-rich conformer of the pyranose ring (3 with ¹C₄ conformation) is required for the formation. = difficult to synthesize

H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, *J. Am. Chem. Soc.* **2021**, *143*, 1428–1434. ⁴⁵

Feasibility of using less stable intermediate

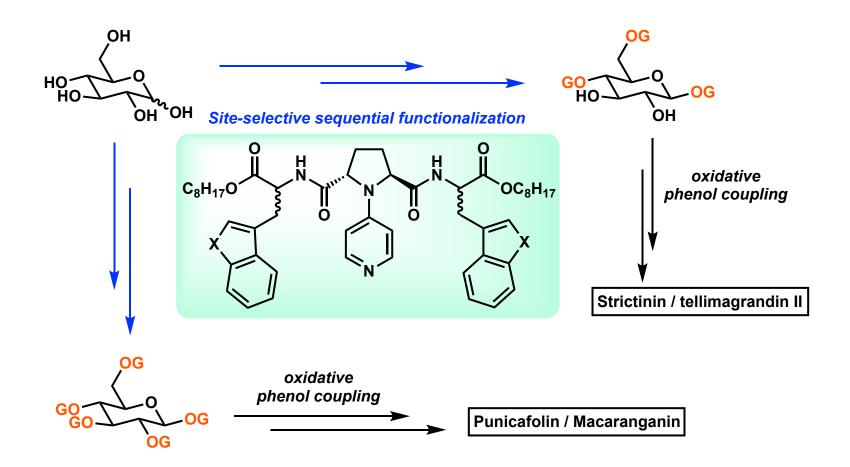
 Conformational analysis of glucose (β-Glc) and the perbenzoylated derivative (β-PBG, a model for 3 (intermediate))


- Stronger anomeric effect was suggested for β-PBG.
- ➤ Axial-rich conformations of 3 can exist to some extent via the ring-flip process of the stable ⁴C₁ conformer.

Final steps of the syntheses

macaranganin (2)

galloyl group


punicafolin (1)

✓ Construction of HHDP group: Oxidative phenol coupling using chiral amine catalyst

H. Shibayama, Y. Ueda, T. Tanaka, T. Kawabata, *J. Am. Chem. Soc.* **2021**, *143*, 1428–1434. ⁴⁷

Short summary

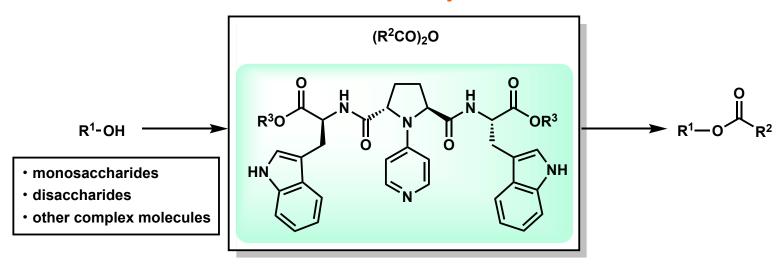

- ✓ No protective groups used for glucose
- √ Extremely short-step total syntheses

Table of contents

- 1. Introduction
- 2. Site-selective acylation of monosaccharides
- 3. Site-selective acylation of complex molecules
- 4. Application to total syntheses
- 5. Summary

Site-selective acylation of complex molecules

Site-selective acylation

- ✓ A newly developed PPy catalyst
 ✓ High site-selectivity
- Minimally protected monosaccharides and complex molecules
- √ Key steps of total syntheses
- ➤ This catalyst can also be used for challenging kinetic resolution (an example for rotaxanes was reported recently: Nat. Commun. 2021, 12, 404.).