Gold-Catalyzed Nucleophilic Cyclization of Allenes

Gold-Catalyzed Nucleophilic Cyclization Reactions of Functionalized Allenes

- Au --- [Xe] 4f¹⁴5d¹⁰6s¹ Au^I --- [Xe] 4f¹⁴5d¹⁰6s⁰ Au^{III}--- [Xe] 4f¹⁴5d⁸6s⁰
 - 1. Introduction
 - 2. Nucleophilic Attack of Heteroatom Nucleophiles
 - 2.1. Oxygen Nucleophiles
 - 2.2. Nitrogen Nucleophiles

D

- 2.3. Sulfur Nucleophiles
- 3. Conclusion

Norbert Krause graduated from Technical University of Braunschweig in 1984 and received his Ph.D. in 1986. After postdoctoral stays at ETH Zürich and Yale University, he joined Technical University of Darmstadt and obtained his Habilitation in 1993. In 1994, he moved to the University of Bonn as Associate Professor, before being appointed to his present position at Dortmund University of Technology as Full Professor of Science (2003 and 2009), and Guest Professor at the Universit e Catholique de Louvain, Belgium (2007), at the University of California, Santa Barbara, CA, USA (2009), and at the Ecole Supérieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI), France (2009). Since 2006, he is a member of the Editorial Board of the European Journal of Organic Chemistry. His review on "Recent Advances in Catalytic Enantioselective Michael Additions" was the World's Most Cited Chemistry Paper in Nov. 2002. His research focuses on the stereoselective synthesis and transformation of functionalized allenes, taking advantage of coinage metal (copper, silver, and gold) catalysis. In his free time, he enjoys snorkeling and riding his motorbike.

Review: Chem. Rev. 2011, ASAP

F. Dean Toste

Ross A. Widenhoefer Review: Chem. Rev. 2008, 108, 3351 Review: Eur. J. Org. Chem. 2006, 4555.

2. Nucleophilic Attack of Heteroatom Nucleophiles

2.1. Oxygen Nucleophiles

2.1.1. Isomerization of Allenyl Ketones : synthesis of multisubstituted furans

The first gold-catalyzed addition of a heteroatom nucleophile

Hashmi, A. S. K. et al. Angew. Chem., Int. Ed. 2000, 39, 2285.

In contrast to other transition metals :

shorter reaction times

milder conditions

CI

>1 week (silver)

- 1 h (palladium)
- ♦(lower catalyst loadings) 1 min (gold)

The formation of the undesired dimerization product **3** (which is also generated in the corresponding silver-catalyzed cyclization) is a serious drawback.

Table S1. Optimization of Reaction Conditions^a

Gold(III) porphyrin-catalyzed cycloisomerization Che, C.-M. et al. Org. Lett. 2006, 8, 325. 1 mol% [Au(TPP)]Cl 10 mol% CF3CO2H acetone, 60°C 05h Ph [Au(TPP)]CI (6) entry substrate product % yield ĩ 2a, R = H88 2 **2b**, R = p-Me 84 3 2c, R = p-OMe 81 4 $2d, R = p \cdot Br$ 85 5 87 2e, R = m-Br1a-i 6 2f. R = o - Br982a-i $\overline{7}$ 86 2g. R = p-Cl8 $2\mathbf{\hat{h}}, \mathbf{R} = p - \mathbf{CO}_2 \mathbf{Me}$ 92 9° 2i, $R = p - NO_{2}$ 91 2j, R = H10 80 11 2k, R = Br85 1j-I 2j-1 2I, $R = CO_{2}Me$ 88 12'13 84 1m2m 14^{\prime} 73 In 2a 82 15 20. X = 0 \bigcirc 78 16 $2\mathbf{p}, \mathbf{X} = \mathbf{S}$ 10-p 20-p 2q, R = Me17 89 R-C) $2\mathbf{r}, \mathbf{R} = \mathbf{B}\mathbf{u}$ 18922q-r lq-r 19 902s2s2097 It 21 212u, R = H95 ⁶. C.H. 93 22 2a-v $2\mathbf{v}$, $\mathbf{R} = \mathbf{B}\mathbf{n}$ In-v C.H. 23'Mer 90 C.H. Iw 211

<u>Gold</u> π -allene complex

Widenhoefer, R. A. et al. Organometallics 2010, 29, 4207.

	0	catalyst	/ + Ph-	L	Y ^{Ph}
	Ph-C-	acid, solvent	Ph-0 + Ph	Me	6
	4a		5a	7a	5. -
entry	acid	catalyst	solvent	time (h)	yield (%) ^{0, c}
1	TFA	[Au(TPP)]Cld	acetone	0.5	88°
2	TFA	[Au(F20-TPP)]Cl ^f	acetone	0.25	78
3	TFA	[Au(TPP)]C1	EtOH	0.5	87
4	TFA	[Au(TPP)]C1	1,2-dichloroethane	1	79
5	TFA	[Au(TPP)]C1	DMF	0.5	78
6	TFA	[Au(TPP)]C1	DMSO	0.5	81
7	TFA	[Au(TPP)]C1	CH ₃ CN	1	82
8	TFA	[Au(TPP)]C1	C ₆ H ₆	2	28
9	TFA	[Au(TPP)]C1	EtOAc	2	17
10 ^g	TFA	[Au(TPP)]C1	acetone	2	28 ^h
11	TsOH	[Au(TPP)]C1	acetone	0.5	87
12	CH₃CO₂H	[Au(TPP)]C1	acetone	1	29
13	-	[Au(TPP)]C1	acetone	2	_1
14	-	[Au(TPP)]OTf	acetone	2	_!
15	TFA	AuCl ₃	acetone	0.5	49 ⁱ
16	TFA	AuPPh ₃ Cl	acetone	0.5	48 ^k
17	TFA	[Au(salen)]Cl ^l	acetone	0.5	38 ^m
18 ⁿ	TFA	AgNO ₃	acetone	0.5	10°

^aReactions were performed with 1 mol% catalyst at 60°C. ⁵¹H NMR yield. ^cAll substrate conversions were quantitative based on ¹H NMR analysis. ⁶H₂(TPP) = mesotetraphenylporphyrin. ^cIsolated yield. ^cH₂(F₂₀-TPP) = mesotetrakis(pentafluorophenyl)porphyrin. ^cReaction conducted at room temperature. ^k31% substrate conversion as determined by ¹H NMR analysis. ⁱNo reaction. ^jThe dimer **7a** was also isolated in 16% yield. ^k58% substrate conversion based on ¹H NMR analysis. ⁱH₂(salen) = *N.N* -bis(salicylidene)ethylenediamine. ^m47% substrate conversion based on ¹H NMR analysis. The dimer **7a** was also isolated in 2% yield.

◆The Au(III) catalyst **6** is highly reactive and can be recovered and reused in up to nine consecutive runs with no appreciable loss of reactivity or decrease of yield.

 \bullet The employment of CF₃CO₂H and a temperature of 60°C for the cycloisomerization reaction is essential.

♦a rapid irreversible demetalation step resulting from unfavorable steric interactions between the porphyrin ring and the newly formed furyl moiety.

 $\bullet\mbox{The}$ active gold species is coordinated to the "distal" double bond of the allene

• more π -philic Au(I) species: coordinates to the distal double bond of allene.

Chlorinated and iodinated allenes show a similar behavior and can be converted to the corresponding halogenated furans.
 Moreover, silyl-, thio-, or selenofurans can be obtained from the corresponding allenes by a 1,2-Si, 1,2-S, or 1,2-Se shift.

Potential energy surfaces for AuCl3- and Au(PR'3)Cl-catalyzed cycloisomerizations

Li, Y. et al. J. Am. Chem. Soc. 2008, 130, 6940.

♦ computational studies confirmed possible formation of the originally proposed Au(III)-coordination

complex 4a; however, neither cyclization transition state nor halirenium intermediate 5a were located.

Au(III)-catalyzed 1,2-Si migration in allenes

Gevorgyan, V. et al. J. Am. Chem. Soc. 2010, 132, 7645.

Potential energy surfaces for the AuCl3-catalyzed cycloisomerization of allenes 4 (R = H)

♦kinetically more favorable 1,2-Si migration over the 1,2-H shift led to the product complex 2-AuCl_{3.}

2

3

R'Si

^a Isolated yield of product for reactions performed on 0.5 mmol scale.

^b Isolated yield of **2e** for reaction performed in MeNO₂

^c Isolated yield of **2e** for reaction performed with 1 mol % of catalyst.

2.1.2. Isomerization of hydroxyallenes : formation of chiral heterocycles

hydroxyallenes substrates with phenyl or electron-rich aromatic substituents

A epimerization during the gold-catalyzed cyclization of phenyl-substituted α-hydroxyallene 12 to dihydrofuran 13.

- ♦ AuCl₃ /CH₂Cl₂ epimerizes both the allene and the dihydrofuran.
- ♦ AuCl/CH₂Cl₂ epimerizes only the allene, but not the dihydrofuran.

Appimerization prevented if

substructure) the Lewis acidity of the gold catalyst is reduced so that the formation of zwitterionic intermediates 14/16 is disfavored;

weakly coordinating solvents decreased the reactivity of the gold catalyst only slightly and led to an improved diastereoselectivity; original AuCl3/CH2Cl2 system at -30°C instead of room temperature.

zwitterionic intermediates

(a planar benzyl cation

The gold-catalyzed cycloisomerization of α,β-dihydroxyallenes is not only stereoselective but also highly chemoselective. (because no product resulting from nucleophilic attack of the β-hydroxy group was observed.)
 Cycloisomerization of β-hydroxyallenes are often very slow, resulting in reaction times of several days.

<u>cycloisomerization</u> of β -hydroxyallenes (6-endo cyclization)

Krause, N. et al. Org. Lett. 2006, 8, 4485

oa	Solvent, r.t.	76)	o_ 9a	
A.,	- 11:4:		4 ·	yield
Au sait	additive	solvent	time	(%)
$\operatorname{AuCl}_{3^a}$		toluene	6 d	58
$\operatorname{AuCl}_{3^a}$	3-hydroxy-	toluene	1 d	62
	propionitrile			
AuCl		CH_2Cl_2	5 d	50
AuCl	$AgBF_4$	CH_2Cl_2	3 d	60
AuCl	$AgBF_4$	toluene	3 d	62
AuCl	pyridine	CH_2Cl_2	4.5 h	64
AuCl	2,2'-bipyridine	CH_2Cl_2	5 d	86
	AgBF ₄	toluene	5 d	_
Au(OAc) ₃		toluene	14 d	_
Ph ₃ PAuCl		toluene	14 d	_
Ph ₃ PAuCl	$AgSbF_6$	toluene	25 min	54
Ph ₃ PAuCl	AgBF ₄	toluene	1 h	60
Ph ₃ PAuCl	$AgBF_4$	CH_2Cl_2	1.5 h	60
Ph ₃ PAuCl	$AgBF_4$	THF	3 d	46
Ph ₃ PAuCl	$AgBF_4$	Et_2O	4 d	56
Ph ₃ PAuCl	$AgBF_4$	MeCN	27 d	62
Ph ₃ PAuCl	$AgBF_4$	$toluene^b$	1.25 h	66
Ph ₃ PAuCl ^c	$AgBF_{4^{c}}$	toluene	6.5 h	61
$\operatorname{Au}(\mathrm{I})\operatorname{complex}_{\textbf{10}^{c,d}}$		toluene	1.5 h	66
195 M solution in Me <i>t</i> Bu	CN. ^b Temperatur tBu P-Au-NCMe	e: 0 °C. ° : SbF ₆	l mol %.	
	Au salt AuCl _{3^a} AuCl _{3^a} AuCl AuCl AuCl AuCl AuCl AuCl AuCl AuCl AuCl Ph ₃ PAuCl Ph ₃ PAuCl	Au saltadditiveAuCl3a3-hydroxy- propionitrileAuCl3a3-hydroxy- propionitrileAuClAgBF4AuClAgBF4AuClAgBF4AuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Au(I) complext0ecdd	Au saltadditivesolventAuCl3atolueneAuCl3a3-hydroxy-propionitrileAuClCH2Cl2AuClAgBF4AuClAgBF4AuClAgBF4AuClpyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAuCl2,2'-bipyridineAu(OAc)3toluenePh3PAuClAgBF6Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ph3PAuClAgBF4Ch2Cl2Ph3PAuClAgBF4Ch2Cl2Ph3PAuClAgBF4Ch2Cl2Ch3PAuClAgBF4Ch2Cl2Ch3PAuClAgBF4Ch2Cl2Ch3PAuClAgBF4Ch2Cl2Ch3PAuClcAgBF4Ch2Cl2Ch3PAuClcAgBF4Ch2Cl2Ch3PAuClcAgBF4Ch2Cl2Ch3PAuClcAgBF4Ch2Cl2Ch3PAuClcAgBF4Ch2Cl2CCh3PAuCl2Ch3PAuCl2CCh3PAuCl3CCh3PAuCl4CCh3PAuCl5CCh3PAuCl5CCh3PAUCL5CCh3PAUCL5C </td <td>Au saltadditivesolventtimeAuCl3atoluene6 dAuCl3a3-hydroxy-toluene1 dpropionitrilepropionitrileAuClAgBF4CH2Cl25 dAuClAgBF4toluene3 dAuClAgBF4toluene3 dAuClAgBF4toluene3 dAuClAgBF4toluene3 dAuCl2,2'-bipyridineCH2Cl25 dAuCl2,2'-bipyridineCH2Cl25 dAu(OAc)3toluene14 dPh3PAuClAgBF6toluene14 dPh3PAuClAgBF4toluene1 hPh3PAuClAgBF4toluene1 hPh3PAuClAgBF4CH2Cl21.5 hPh3PAuClAgBF4HFF3 dPh3PAuClAgBF4MeCN27 dPh3PAuClAgBF4toluene^b1.25 hPh3PAuClAgBF4'toluene1.5 hMu(I) complext0^{c,d}toluene1.5 h195 M solution in MeCN. ^b Temperature:0 °C. ^c 1 mol %.d$Hu _{-Au-NCMe}^{+}$SbF6</td>	Au saltadditivesolventtimeAuCl3atoluene6 dAuCl3a3-hydroxy-toluene1 dpropionitrilepropionitrileAuClAgBF4CH2Cl25 dAuClAgBF4toluene3 dAuClAgBF4toluene3 dAuClAgBF4toluene3 dAuClAgBF4toluene3 dAuCl2,2'-bipyridineCH2Cl25 dAuCl2,2'-bipyridineCH2Cl25 dAu(OAc)3toluene14 dPh3PAuClAgBF6toluene14 dPh3PAuClAgBF4toluene1 hPh3PAuClAgBF4toluene1 hPh3PAuClAgBF4CH2Cl21.5 hPh3PAuClAgBF4HFF3 dPh3PAuClAgBF4MeCN27 dPh3PAuClAgBF4toluene ^b 1.25 hPh3PAuClAgBF4'toluene1.5 hMu(I) complext0 ^{c,d} toluene1.5 h195 M solution in MeCN. ^b Temperature:0 °C. ^c 1 mol %.d $Hu _{-Au-NCMe}^{+}$ SbF6

exo-hydroalkoxylation of hydroxyallenes

Widenhoefer, R. A. et al. J. Am. Chem. Soc. 2006, 128, 9066.

Ph- P	h catalyst (5 m toluene, 25	°C Ph	0 +	PhO. Ph	CH ₃
entry	catalyst	time	12(0-020)	vield 4 0 8	vield 408
enuy	Catalyst	ume	COIN.	yielu 12ª	yield 13 ^d
1	14 /AgOTf	5 min	>99%	48%	37%
2	14/AgOTs	3 min	>99%	96%	$\leq 1\%$
3	AgNO ₃	16 h	17%	14%	0%
4	AgOTs	48 h	0%		
5	$[PtCl(H_2C=CH_2)]_2/$	5 min	>99%	0%	49%
	P(C _c H _c CF ₂) ₂				

^a Yield determined by GC analysis vs internal standard. 14: Au[P(t-Bu)2(o-biphenyl)]Cl

♦No trace of the 5-exo isomer could be detected

Addition of pyridine or 2,2-bipyridine induced a remarkable increase of the reactivity

The yield was hardly affected by the solvent and the presence of silver salts. (leads to the formation of cationic gold species.)

a Conditions A: Ph3PAuCl/AgBF4 in toluene. Conditions B: AuCl/ pyridine in CH₂Cl₂. ^b 67% conversion of **8b**. ^c dr = 70:30.

♦Addition of N-iodosuccinimide (NIS) to the reaction mixture induces a tremendous acceleration, leading to the formation of the corresponding iodinated dihydropyran. This effect is probably caused by a very rapid iododeauration of a σ -gold intermediate(10, page 4) by NIS, which is activated by the gold catalyst.

Krause, N. et al. Eur. J. Org. Chem. 2010, 311.

Entry	[Au]	mol-%	Solvent	Time	Yield [%]
1	AuCl ₃ ^[a]	5	CH ₂ Cl ₂	1 min	67
2	AuCl ₃ ^[a]	0.5	CH_2Cl_2	1 min	50
3	AuCl ₃ ^[a]	0.05	CH_2Cl_2	15 min	42
4	Ph ₃ PAuCl/AgBF ₄	5	toluene	1 min	52
5	Ph ₃ PAuCl/AgBF ₄	0.5	toluene	15 min	42
6	AuCl	5	CH_2Cl_2	1 min	56
7	AuCl	0.5	CH_2Cl_2	20 min	49
8 ^[b]	AuCl	5	CH_2Cl_2	1 h	47
9	AuCl/Pyridine	5	CH_2Cl_2	1 min	50
10		—	toluene	2 d	45

?

♦the regioselectivity of Au-catalyzed hydroalkoxylation depended strongly on the nature of the counterion.

enantioselective exo-hydroalkoxylation of hydroxyallenes

Widenhoefer, R. A. et al. Angew. Chem., Int. Ed. 2007, 46, 283.

Ar = 4-MeO-3,5-t-Bu₂C₆H₃

Mechanism.

In the major pathway, complexation of Au to the Si face of the C4=C5 bond of rac-9 would form Au-allene complexes (Si,S)-I and (Si,R)-I.

◆The minor enantiomers (S,Z)-10 and (S,E)-10 would be formed through outer-sphere cyclization of the Au-allene complexes (Re,S)-I and (Re,R)-I.

[a] Ratio of isomers refers to trans/cis or E/Z. [b] Combined yield of all diastereomers with >95% purity. [c] For reactions that form two diastereomers, ee values are reported as trans/cis or E/Z. [d] Determination of the enantiomeric purity was complicated by the coelution of one enantiomer of (E)-6 with one enantiomer of (Z)-6 in HPLC. [e] Yield determined by 1H NMR analysis with reaction carried out in [D8]toluene.

Н

 R^3

R³

92 (80)

2.5 mol% dppm(AuCl)₂

5 mol% Ag-(R)-

Toste, F. D. et al. Science 2007, 317, 496.

R ¹		R ³ R ³	ben	izene, 23	°C	R^1	
	13					14	R
Entry	n	R ¹	R^2	R ³	Time (h)	% Yield	% ee
1	1	-(CH ₂) ₄ -	н	Н	1	90	97
2	1	CH ₃	н	Н	1	91	95
3	1	CH ₂ CH ₃	н	н	5	89	96
4	1	-(CH ₂) ₄ -	н	CH_3	2	79	99
5	1	-(CH ₂) ₄ -	н	Ph	30	86	92
6	1	-(CH ₂) ₄ -	CH_3	Н	13	90	90
7	2	CH ₃	н	н	15	81	90

н

counteranion to the cationic gold center

н

24

more-polar solvents, such as nitromethane or acetone, gave significantly lower enantiomeric excess values. the less-polar benzene proved to be the optimal medium,

These findings are consistent with an ion-pair model, in which

the degree of enantioinduction depends on the proximity of the

providing the desired product in an exceptional 97% ee.

96

8

2

Н

The use of chiral counterions, rather than chiral neutral ligands, could provide high enantioselectivity in additions of oxygen nucleophiles to allenes.

- Neither noncoordinating (BF₄) nor more coordinating (OPNB) counterions associated with dicationic chiral bisphosphine(digold) species induced significant enantioselectivity in the cyclization.
- Chiral Binol-derived phosphoric acid 15 in conjunction with the dppm ([bis(diphenyl)phosphino]methane) ligand proved optimal.

The chiral counterion can be combined additively with chiral ligands to enable an asymmetric transformation that cannot be achieved by either method alone. For the terminal allene(Entry 8), the enantiomeric excess could be improved from 80 to 92% by using a chiral gold catalyst [(S,S)-DIPAMP](AuCI)2 together with the chiral silver salt.

6

2.1.3. Isomerization of allenic esters : formation of lactones (Ph₃P)Au cyclization of allenic esters

Hammond, G. B. et al. J. Am. Chem. Soc. 2008, 130, 17642.

 a General conditions: allenoate 1 0.24 mmol, Au(PR_3)Cl 2 0.2 mmol, AgOTf 0.2 mmol, CH_2Cl_2 2.0 mL. b Isolated yields.

The structure of 3 was determined by ¹H, ¹³C, and ³¹P NMR spectroscopic data and X-ray crystallography of complex 3d.

<u>dual-catalytic C-C bond formation as an</u> <u>alternative to protodemetalation</u> Blum, S. A. *et al. J. Am. Chem. Soc.* **2009**, *131*, 18022.

\sim		11	Oxida Base	nt (2.5 e	iquiv)
	12a	Ph ^{//} (1.5 equiv) 13a	MeCN H ₂ O (*	(0.15M 10 equiv)) /), rt
entry	catalyst	oxidant	base	time	yield ^{a}
1	$Ph_3PAuNTf_2$	Selectfluor	none	4 d	44%
2	$Ph_3PAuNTf_2$	Selectfluor	K_3PO_4	4 h	94%
3	no catalyst	Selectfluor	K_3PO_4	10 d	NR
4	$AuCl^b$	Selectfluor	K_3PO_4	48 h	NR
5	AgOTf	Selectfluor	K_3PO_4	10 d	NR
6	$PtCl_2$	Selectfluor	K_3PO_4	10 d	NR
7	CuOAc	Selectfluor	K_3PO_4	10 d	NR
8	H_2SO_4	Selectfluor	K_3PO_4	10 d	NR
9	SIPrAuCl/AgOTf	Selectfluor	K_3PO_4	10 d	NR
10	Pd(OAc) ₂ / CuOAc	Selectfluor	K_3PO_4	24 h	decomp.
11	AuCl ₃	Selectfluor	K_3PO_4	6 d	22%
12	$Ph_3PAuNTf_2^b$	Selectfluor	K_3PO_4	24 h	72%
13	$Ph_3PAuNTf_2$	no oxidant	K_3PO_4	5 d	NR
14	Ph ₃ PAuNTf ₂	PhI(OAc) ₂	K_3PO_4	7 d	NR
15	$Ph_3PAuNTf_2$	tBuOOH	K_3PO_4	7 d	NR
16	Ph ₃ PAuNTf ₂	$Oxone^d$	K_3PO_4	7 d	NR
17	Ph ₃ PAuNTf ₂	$NFSI^{e}$	K ₃ PO ₄	7 d	54% ^f
^a Iso imidazo N-Fluor	olated yield. ^b 5 mol ¹ 9 olin-2-ylidene. ^d Oxone obenzenesulfonimide.	%. ^c SIPr = 1, = KHSO ₅ \cdot 1/2 ^f Conversion es	3-Bis(2,6- KHSO ₄ •1/ stimated b	diisopro 2K ₂ SO ₄ y ¹ H NI	opylphenyl) . ^e NFSI = MR.

♦ In the presence of triflic acid or iodine, vinylgold compounds 3a undergo protodeauration or iododeauration to the corresponding butenolides.

Thus, the mechanism of the gold-catalyzed cyclization of allenic esters is similar to that proposed for α -hydroxyallenes

The observed crossover is consistent with the intermediacy of 10 and 11 followed by intermolecular transmetalation and reductive elimination.

2.2. Nitrogen Nucleophiles

2.1.1. endo-selective hydroamination

first intramolecular endo-selective hydroamination of allenes

Krause, N. et al. Org. Lett. 2004, 6, 4121.

<i>i</i> ₽r ~ H	M	e ´´ ^{`'```} OBn NHPG	2 mol solve	% AuCl ₃		∍ ,OBn 2
entry	PG	solverIt	<i>T</i> (°C)	time	yie <mark>ld</mark> , %	dr
1	Н	CH ₂ Cl ₂	rt	5 <mark>days</mark>	74	>99:1
2	Ms	CH ₂ Cl ₂	rt	30 min	77	94:6
3	Ts	CH ₂ Cl ₂	rt	30 min	93	95:5
4	Ts	CH ₂ Cl ₂	0	1 h	95	96:4
5	Ts	THF	rt	1.5 h	95	93:7
6	Ac	CH ₂ Cl ₂	rt	30 min	80	70:30
7	Boc	CH ₂ Cl ₂	rt	30 min	69	46:54

cycloisomerization of allenic hydroxylamine or hydroxylamine ether

 R^2

 \mathbb{R}^2

Krause, N. et al. Angew. Chem., Int. Ed. 2009, 48, 6339. Different reaction rates in the endo cycloisomerization

$$\begin{array}{c} \mathbb{R}^{1} & \overbrace{\mathbf{HX}}^{n} \mathbb{R}^{2} & \overbrace{\mathbf{R}^{1}}^{n} \mathbb{R}^{1} \\ & \stackrel{\mathbf{K}_{\text{rel}}}{\longrightarrow} \mathbb{R}^{1$$

possible consequences for the cyclization of N-hydroxy-a-aminoallenes

NΗ path a path b D \cap ÒН ÓН 5 3 Attack of O: fast Attack of N: slow vs 6-membered ring: slow 5-membered Ring: fast Gold-catalyzed synthesis of N-hydroxypyrrolines R R³ AuCl (5 mol%) R R¹ 'R' CH₂Cl₂, RT Ŕ, NH. HO 25 min-2 h ċн 7 6 Entry R \mathbb{R}^2 R³ R^4 (Yield [%]) 1 iPr Me н CH₂OBn (76) 2 *n*Bu Me CH₂OBn Н (80) 3 Ph Me CH₂OBn Н (73) CH₂OH 4 nBu (67)Me Н 5^[a] Me н $(CH_2)_2Ph$ (78) н 6 iPr н н (CH₂)₂CO₂Et (77) [a] was used as a diastereomeric mixture (1:1) Entry Gold-catalyzed synthesis of dihydroisoxazoles 1 2 A (5 mol%) 3 CH₂Cl₂, RT NH, 15 min–2 h 5 8 10 R³ R1 R² (Yield [%]) Entry d.r. 95:5 1 *n*Bu Me CH₂OBn (77)2 CH₂OBn (72) 95:5 н Me 3 н Me CH₂OTBS (78) 51:49 (87) 4 Me н $(CH_2)_2Ph$ 5 Me н Me (86) 6 iPr н (86) (CH₂)₂CO₂Et

Proposed mechanism for the formation of <u>cis</u>-substituted dihydroisoxazoles coordination of the gold catalyst to the allenic double bond adjacent to the hydroxylamine moiety affords π complex A

♦ complex A undergoes a 5-endo cyclization to the zwitterionic species B.

the bulky gold moiety is preferentially situated trans to the group R3

the diminished reactivity of unprotected aminoallene is probably due to deactivation of the gold catalyst by the Lewis-basic amino group.

•all cycloisomerizations proceeded with exclusive 5-endo regioselectivity.

iPr.,,, H	HO NH CH ₂ Cl ₂ , RT	i0l%) → iPr''''	OBn N OH
6a Entry	(d.r. > 99:1) Precatalyst	/a (d 	I.r. > 99:1) Yield [%]
1	AuCl ₃	0.5	77
2	AuCl	0.5	94
3 ^[a]	AuCl	7	87
4	Α	18	40 ^[b]
5	В	1	62 ^[c]
6	[AuCl(PPh ₃)]/AgBF ₄	16	43
7	AgBF ₄	2	88
8 ^[d]	HAuCl₄/LiCl	2	64

[a] 1 mol% of AuCl was used. [b] 7% starting material was recovered. [c] 37% starting material was recovered. [d] Water was used as solvent. MeC

u⁺-NCPł Aut -NC SbF SbF fBu MeC В allenic substrates in which the heteroatom positions were exchanged.

♦ cyclization proceeded by the nucleophilic attack of the nitrogen atom ♦ afforded a mixture of the 3,6-dihydro-1,2-oxazine and the 4,5-dihydroisoxazole

/Рг.,, H 8a (d.r. > 99:1)	[Au] (5 CH ₂ C	⁵ mol%) Cl ₂ , RT <i>i</i> Pr N 6-endo 9a	^{Bn} + ^{iPr} N O OBn 5-endo 10a
Precatalyst	t [h]	9a : Yield [%] (d.r.)	10a: Yield [%] (d.r.)
AuCl	25	47 (> 99.1)	19 (87.13)

	AuCl	2.5	47 (>99:1)	19 (87:13)	71:29
	AuCl ₃	2.5	49 (>99:1)	15 (89:11)	77:23
[a]	AuCl ₃	3.0	35 (>97:3)	16 (87:13)	69:31
[b]	AuCl ₃	62	40 (>98:2)	26 (87:13)	61:39
	$[Au(PPh_3)]BF_4^{[c]}$	1.5	3 (n.d.) ^[d]	69 (79:21)	4:96
	A	1.5	3 (n.d.) ^[d]	81 (94:6)	4:96

[a] A stock solution of AuCl3 in MeCN was used. [b] Reaction performed in THF. [c] Prepared in situ from [AuCl(PPh₃)] and AgBF₄. [d] Not determined.

♦ highly regioselective cyclization of the allenic hydroxylamine ether 8a to 4,5-dihydroisoxazole 10a could be achieved in the presence of cationic gold(I) complexes

9a/10a

2.1.2. exo-selective hydroamination

exo-selective hydroamination of N-allenyl carbamates

Widenhoefer, R. A. et al. J. Am. Chem. Soc. 2006, 128, 9066.

♦ formation of the *E*-alkene moiety of (*R*)-9 requires selective cyclization of gold-allene intermediate cis-I

◆Au-catalyzed conversion of (*S*)-8 to (*R*)-9 presumably involves rapid and reversible formation of *trans*-I followed by irreversible cyclization of *cis*-I to form II.

•the transition state for C-N bond formation is destabilized to a greater extent by a cis arrangement of the carbamate moiety and *n*-propyl group (*trans*-I \rightarrow II) than by a cis arrangement of the Au[P(*t*-Bu)2-(*o*-biphenyl)] moiety and the *n*-propyl group (*cis*-I \rightarrow II).

dynamic kinetic enantioselective hydroamination(DKEH) of allenes

Widenhoefer, R. A. et al. J. Am. Chem. Soc. 2007, 129, 14148.

Table 1.Dynamic Kinetic Enantioselective Hydroamination(DKEH) of N-(γ -Allenyl) Carbamates Catalyzed by a Mixture of(S)-1 (2.5 mol %) and AgClO₄ (5 mol %) in *m*-Xylene at 23 °C

x_	IHCbz 2 R ¹ (S)-1 (2.5 mol % AgClO ₄ (5 mol % mxylene 23 °C, 24 h	(Z)-3	$rac{R^1}{R^2}$ +	Cbz X (E)-3	R^2
ontry	allene	yield (Z)-3 +	(Z)-3/	ee (Z)-3	ee (E)-3
cituy	alicite	(L)-0 (76)-	(L)-0	(70)	(70)
1	$2a (X = CPh_2, R^1 = Me_3)$	94	3.1:1	96	76
	$R^2 = Et$)				
2	$2b (X = CPh_2, R^1 = Me)$	99	10.1:1	91	9
	$R^2 = n$ -hexyl)				
36	$2c (X = CPh_2, R^1 = Me_1)$	99	2.6:1	87	54
	$R^2 = i - Bu$				
4	$2\mathbf{d} (\mathbf{X} = \mathbf{CPh}_2, \mathbf{R}^1 = \mathbf{Me}_2$	94	2.0:1	95	67
	$R^2 = i - Pr$				
50	$2e (X = CPh_2 R^1 = Me$	52	<1.25	2	_
2	$R^2 = t_r Bu$			-	
6	$2f(X = CPh_2 R^1 = Ft$	86	43.1	84	47
·	$P^2 = v \text{ hervil}$	00			
7	$2 \sigma (X = CH_0 R^1 = M_0$	87	24.1	75	45
1	$\mathbf{R}^2 = \mathbf{v}$ here \mathbf{h}	07	2.7.1	,5	45
	$\mathbf{K}^{-} = n$ -nexyl)				

^a Yield of isolated material of >95% purity. ^b Reaction run at 0 °C for 24 h followed by 23 °C for 24 h. ^c Reaction run at 60 °C for 212 h followed by 100 °C for 48 h.

Figure 1. Plots of concentration versus time (left-hand column, minor enantiomers omitted for clarity) and Z/E ratio versus conversion (right-hand column) for the cyclization of *rac*-**2a** catalyzed by (*S*)-1/AgClO₄ (top plots), a ~3:1 mixture of (*R*)-**2a** and (*S*)-**2a** catalyzed by (*S*)-1/AgClO₄ (middle plots), and a ~3:1 mixture of (*R*)-**2a** and (*S*)-**2a** catalyzed by (*R*)-1/AgClO₄ (bottom plots) in *m*-xylene at 23 °C. Catalyst loading: **1** = 2.5 mol %; AgClO₄ = 5 mol %.

highly enantioselective hydroamination of allenes

Toste, F. D. et al. J. Am. Chem. Soc. 2007, 129, 2452.

^a Isolated yield after column chromatography. ^b Determined by HPLC. ^c Catalyst prepared in situ by stirring for 5 min in DCE before addition to substrate. d OPNB = p-nitrobenzoate. e ODNB = 3,5-dinitrobenzoate. f ent-2.

Table 2. Scope of Gold(I)-Catalyzed Hydroamination of Allenes

entry	substrate d	conditions ^a	time (h)	product	% yield ⁰	% ee
	$R_2 \xrightarrow{NHTs} R_1$		R ₂ R ₂	Ts N R	-R,	
1	10 B ₁ = Me: B ₂ = H	А	15	11	98	99
2	12 B. = Et: B. = H	Ad	17	13	90	99
3	14 R, = -CH ₂ (CH ₂) ₂ CH ₂ -: R ₂ = H	A	15	15	75	83
4	1 $B_1 = -CH_2(CH_2)_2CH_2 = H_2$	A	17	2	88	98
5	16 R ₁ = -CH ₂ (CH ₂) ₄ CH ₂ -; R ₂ = H	A	15	17	88	98
6	18 R ₁ = Me: R ₂ = Me	в	15	19	94	93
7	20 R1 = Me: R2 = -CH2(CH2)2CH	la- B	15	21	99	70
8	22 R ₁ = Me; R ₂ = Ph	c	15	23	99	87
9	24 Me NHTs	D	17	25	76	96
10	26 NHTs	A	25	27	80	98
11		A ^a	25	29	79	98
	R_2 $NHTs$ R_1 R_2 R_1		$R_2 \rightarrow \langle R_2 \rangle$		R1	
12	30 R ₁ = Me; R ₂ = H	D	15	81 31	88	81
13	32 R ₁ = Et; R ₂ = H	D	24	33	41	74
14	34 R ₁ = Me; R ₂ = Me	D	24	35	70	98
15	36 R ₁ = Me; R ₂ = Ph	D	24	37	70	88
16	38 R ₁ = Me; R ₂ = -CH ₂ (CH ₂) ₃ CH	l2- D	17	39	66	97

^{*a*} Reaction conditions: A = 3 mol % of 4, 0.3 M in DCE, 23 °C; B = 5 mol % of 4, 0.3 M in MeNO₂, 50 °C; C = 5 mol % of 7, 0.3 M in MeNO₂, 50 °C; D = 5 mol % of 9, 0.3 M in MeNO₂, 50 °C. ^{*b*} Isolated yield after column chromatography. ^{*c*} Determined by HPLC. ^{*d*} 5 mol % of catalyst. ^{*e*} At 50 °C.

the remaining coordinated counterion was crucial for stereoinduction.

• replacing chloride with a larger coordinated counterion could further increase the transmission of chiral information.

enantioselective hydroaminations and hydroalkoxylations of allenes with hydroxylamines and hydrazines

Toste, F. D. et al. Angew. Chem., Int. Ed. 2010, 49, 598.

1	1a; NBoc	н	A	2a; 46	5
2	1b; NBoc	Boc	A	2b;>98 ^[d]	70
3	1c; NBoc	Mts	A	2c;>98 ^[d]	80
4	1c; NBoc	Mts	A ^[e]	2c; 78	97
5	1d; O	н	B ^[f]	2d; 92	10
6	le; O	Cbz	В	2e; 8 ^[d]	<u> </u>
7	1 f; O	Boc	В	2 f; 93	93

[a] Reaction Conditions: A = Catalyst I (5 mol%), 0.3 м in MeNO₂, 50 °C, 15 h; B = Catalyst I (3 mol%), 0.1 м in CH2Cl2, 23°C, 24 h; [b] Yield of product isolated after column chromatography. [c] Determined by HPLC methods. [d] Conversion determined by ¹H NMR analysis. [e] Catalyst II. [f] 18 h. Boc = tert-butoxycarbonyl, Cbz = benzyloxycarbonyl, Mts = 2-mesitylsulfonyl, binap = 2,2-bis(diphenylphosphanyl)-1,1-binaphthyl, DTBM-Segphos = 5,5'-bis{di (3,5-di-tert-butyl-4-methoxyphenyl)phosphino}-4,4'-bi-1,3-benzodioxole.

Catalyst I Ar = 3,5-xylyl [(R)-xylyl-binap(AuOPNB),]

Catalyst II Ar = 3,5-di-tert-butyl-4-methoxyphenyl [(R)-DTBM-Segphos(AuOPNB),]

Table 2: B	Hydroalkoxylation optimization. OCN CAL 3 Catalyst 0.1 M Toluene, 23 °C	C, 15 h	
Entry	Catalyst ^[a]	Yield [%] ^[b]	ee [%] ^[c]
1	I	0	_
2	3 mol% [dppm(AuCl)₂] 3 mol% IV	98 ^[d]	65
3	3 mol% [(R)-binap(AuCl)₂] 3 mol% IV	98 ^[d]	8
4	3 mol% [(S)-binap(AuCl) ₂] 3 mol% IV	98	42
5	3 mol% [dppm(AuCl) ₂] 6 mol% III	98	98

[a] Reaction Conditions: 0.1 м in toluene, 23 °C, 15 h; [b] Yield of product isolated after column chromatography. [c] Determined by HPLC methods. [d] Conversion determined by ¹H NMR analysis. dppm = bis(diphenylphosphanyl)methane.

(S)-TriPAg (III) Ar = 2,4,6-triisopropylphenyl

(S)-(5) Ag (IV) Ar = 3,5-ditrifluoromethylphenyl

Entry	Substrate		R ¹	R ²	Cond. ^[a]	Product		Yield	ee	140
								[%] ^[b]	[%] ^[c]	
1	NHMts P ¹	6	Me	-	А	Mts Bachi N	7	98	99	
2	BocN /	8	-(CH ₂) ₄ -	-	Α	BOCIN	9	90	83	
3	✓ R ¹	lc	-(CH ₂) ₅ -	-	А	~ > R' R'	2 c	75	97	Ent
4		10	Me	_	В	Boc	11	91	98	1
5		12	-(CH ₂) ₄ -	-	В		13	98	91	2
6	~ R ¹	1 f	-(CH ₂) ₅ -	-	В	$\sim \gamma R^1$	2 f	93	93	2
7	NHBoc Me	14	Me	н	С	Boc	15	94	63	4
8	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} $	16	н	Me	С		17	73	99	5 6
9	,O−NHBoc ,R ¹	18	-(CH ₂) ₅ -	н	D ^[d]	O-NBoc	19	63	89	[a]
10		20	-(CH ₂) ₅ -	Me	D		21	85	89	0.1
11	R^2	22	Me	Me	D		23	79	89	(6 r

[a] Reaction Conditions: $A = [(R)-DTBM-Segphos(AuOPNB)_2]$ (5 mol%), 0.3 M in MeNO₂, 50°C, 15 h; B = I (3 mol%), 0.1 M in CH₂Cl₂, 23 °C, 24 h; C = [(R)-DM-MeOBiPhep(AuOPNB)_2] (5 mol%), 0.1 M in MeNO₂, 50°C, 24 h; D = I (5 mol%), 0.3 M in MeNO₂, 50°C, 24 h. [b] Yield of the product isolated after column chromatography. [c] Determined by HPLC methods. [d] 36 h, 65 °C. DM-MeOBiPhep = 2,2'-bis[di (3,5-xylyl)phosphino]-6,6'-dimethoxy-1,1'-biphenyl.

Table 4: Hydroxylamine hydroalkoxylation scope.

	BocN ^O R ²	H n		conditions			1
Entry	Substr.	n	R^1 ; R^2	Cond. ^[a]	Prod.	Yield [%] ^[b]	<i>ee</i> [%] ^[c]
1	26	1	Me; H	А	27	98	98
2	3	1	-(CH ₂) ₅ -; H	Α	4	75	99
3	28	1	Me; Me	Α	29	99 ^[d]	40/97
4	30	2	Me; H	A ^[e]	31	66	50
5	30	2	Me; H	В	31	94	87
6	30	2	Me; H	С	31	36	45

[a] Reaction Conditions: $A = [dppm(AuCl)_2]$ (3 mol%), III (6 mol%), 0.1 M in toluene, 23 °C, 18 h; $B = [(S,S)-dipamp(AuCl)_2]$ (3 mol%), III (6 mol%), 0.1 M in toluene, 23 °C, 18 h; $C = [(S,S)-dipamp(AuCl)_2]$ (3 mol%), (*R*)-AgTriP (6 mol%), 0.1 M in toluene, 23 °C, 18 h. [b] Yield of product isolated after column chromatography. [c] Determined by HPLC methods. [d] 5:1 d.r. [e] 60 h. dipamp = 1.

2.3. Sulfur Nucleophiles

cycloisomerization of α -thioallenes

Krause, N. et al. Angew. Chem., Int. Ed. 2006, 45, 1897.

Table 1: Cycloisomerization of α -thioallene **1a** to 2,5-dihydrothiophene **2a**.

R²

[a] Small amounts of disulfide 3 were formed as side product.

Table 2: Scope of the cycloisomerization of α -thioallenes 1 to 2,5-dihydrothiophenes 2.

 \mathbb{R}^2

		R	H H	SH AuCl (5 r solvent, 1	nol%) 20°C ►		R ³		
Entry	1	R ¹	R ²	R ³	d.r. (1)	Solvent	t	2 (Yield)	d.r. (2)
1	1 b	iPr	Me	CH₂OBn	95:5	CH ₂ Cl ₂	1.5 h	2b (86%)	95:5
2	16	iPr	Me	CH ₂ OBn	95:5	THF	2 days	2b (24%)	95:5
3	16	iPr	Me	CH ₂ OBn	95:5	toluene	1 days	2b (55%)	95:5
4	1 b	iPr	Me	CH ₂ OBn	95:5	hexane	2 days	2b (trace)	
5 ^[a]	1 b	iPr	Me	CH ₂ OBn	95:5	CH ₂ Cl ₂	5 min	2b (87%)	95:5
6	1 c	iPr	Me	4-CF ₃ C ₆ H ₄ OCH ₂	>99:1	CH ₂ Cl ₂	4 h	2c (67%)	>9911
7	1 d	n-hexyl	Me	CH ₂ OBn	>99:1	CH ₂ Cl ₂	2 h	2d (82%)	> 99:1
8	1 e	$H_2C = CH(CH_2)_7$	н	Н		CH ₂ Cl ₂	1.5 h	2e (43%)	-

[a] AuI (5 mol%) was used instead of AuCl.

3. Conclusion

(1) For carbophilic activation with Au(I), the reactivity and selectivity of cationic Au(I) complexes may be tuned by switching the ligand. Biphenyl-substituted phosphines ligands have repeatedly been observed to induce greater reactivity and modulate selectivity among competing reaction pathways.

(b) The stability of Au(III) catalysts may be greatly improved with N-donor ligands. In some cases, the reactivity of the Au(III) center may be attenuated. Such ligands have also been successfully employed with Au(I) precatalysts in oxidation and group transfer reactions.

Corma, A. et al. Angew. Chem., Int. Ed. 2007, 46, 1536.

◆The homogeneous catalysis studies show us that **Au**^I, which has the same d¹⁰ electronic configuration as Pd metal and Cu^I, is active and very selective for performing the Sonogashira reaction.

◆Au^{III} does not catalyze the cross-coupling reaction but does catalyze the homocoupling condensation.