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Introduction

Compounds that by design are intended to form a covalent bond with a specific molecular target.

REVERSIBLE INHIBITORS TARGETED COVALENT INHIBITORS
Traditional reversible drugs are in equilibrium with their Covalent irreversible drugs bind specifically to a drug target and form a
target — continually binding, unbinding and rebinding precisely directed, permanent bond with their target
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Non-Covalent and Covalent Inhibitors
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Ruddraraju, K. V.; Zhang, Z. Mol. BioSyst. 2017, 13, 1257.

Non-covalent inhibitors bind to their
targets in equilibrium and in a reversible

manner.

Covalent inhibitors bind to their targets in a two-
step manner — the formation of initial non-
covalent complex being reversible and formation
of final covalent complex being irreversible.



Timeline of Covalent Inhibitor Drugs
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Application of Covalent Inhibitor Drugs

FDA-approved covalent drugs (2011-2019)

Therapeutic
No Name area Warhead Year
1. Telaprevir Anti-HCV o-Ketoamide 2011
2. Boceprevir Anti-HCV o-Ketoamide 2011
3. Abiraterone Anticancer — 2011
4. Afatinib Anticancer o,B-Unsaturated carbonyl 2013
5. Dimethyl Multiple o,B-Unsaturated carbonyl 2013
fumarate sclerosis
6. Ibrutinib Anticancer o,B-Unsaturated carbonyl 2014
7. Osimertinib Anticancer o,B-Unsaturated carbonyl 2015
8. Olmutinib Anticancer o,B-Unsaturated carbonyl 2015
9. Narlaprevir Anti-HCV o-Ketoamide 2016
10. Acalabrutinib Anticancer o,B-Unsaturated 2017
propargylamide
2 % . 11. Neratinib Anticancer o,B-Unsaturated carbonyl 2017
= Cancer ® Anti-infectives 12. Dacomitinib  Anticancer o,B-Unsaturated carbonyl 2018
mCNS + CV ® Gastrointestinal 13. Selinexor‘ Anticancer a,B-Unsaturated carbonyl 2019
14. Zanubrutinib  Anticancer o,B-Unsaturated carbonyl 2019
® Other
Approved covalent drugs by therapeutic indication.
Sutanto, F.; Konstantinidou, M.; Démling, A., RSC Medicinal Chemistry. 2020, 11, 876. 7



The advantages and disadvantages

Advantages

» Improving efficiency.

» Lowering the dose.

» Increasing compliance due to less-
frequent dosing.

» Reducing the possibility of drug
resistance.

» Targeting shallow binding sites.

Disadvantages

» May cause unexpected toxicity or
hypersensitivity.

» May cause drug-induced toxicity.

» May not be suitable for targets that
are rapidly turned over/ degraded by
enzymes.

» May cause problems in choosing the
correct warhead targeting.
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Different Warheads of TCls

The distribution of reaction mechanisms from the CovPDB database

Directed TCI Drug Approvals
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Bond
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Classification of Covalent Inhibitors

Covalent Inhibitors
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Tuley, A.; Fast, W. Biochemistry. 2018, 57, 3326.



Covalent Reversible Inhibitors

® Selective
® K;* describes the overall dissociation constant of the two steps
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The low pK, of the a-proton makes the reaction reversible.
Tuley, A.; Fast, W. Biochemistry. 2018, 57, 3326.
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Slow Substrates

® Inhibitor recognized as substrate for the enzyme
® Covalent intermediate further decomposes into free enzyme and non-active product
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Slow hydrolysis of the pseudo thiourea through the normal catalytic mechanism
leads to release of O-ureido and recovered active enzyme.
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Residue-Specific Reagents

® Irreversible

® The least selective

® Used only in vitro as biochemical tools

® Influenced by chemo selectivity for particular nucleophiles instead of noncovalent
affinity
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High concentration leads to nonspecific enzyme inhibition, illustrating the
nonselective nature of residue-specific reagents.

Tuley, A.; Fast, W. Biochemistry. 2018, 57, 3326.
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Affinity Labels

® |rreversible
® Site selective inhibition

® Moiety with non-covalent binding affinity + reactive group (typically a poor
electrophile)

® Dissociation from covalent complex E—I to non-covalent complex Eel can be ignored
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Mechanism-Based Enzyme Inactivators

® Irreversible
® Selectively Bind to active site of enzymes

® Processed by catalytic mechanism to give reactive species
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Kinase-targeting Covalent Inhibitors

Kinases play crucial roles in regulating various cellular activities by catalyzing the phosphorylation of biomacromolecules.
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Covalent inhibitors use electrophilic warhead groups to react with nucleophilic kinase residues such as cysteine to form
covalent bonds to inhibits ATP binding.
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Goebel, G.; Wu, P. Trends Pharmacol. Sci. 2022, 43, 10. 19



Kinase-targeting Covalent Inhibitors

Bruton's tyrosine kinase (BTK)

BTK plays a crucial role in B cell development as it is required for transmitting signals from the pre-B cell receptor that

forms after successful immunoglobulin heavy chain rearrangement.
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Kinase-targeting Covalent Inhibitors

BTK-targeting covalent inhibitors block signaling through BTK inhibition by forming a covalent bond with Cys-481 in the
ATP binding domain of BTK.
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Kinase-targeting Covalent Inhibitors

Epidermal growth factor receptor (EGFR) is a transmembrane protein that is activated by binding of its specific ligands,
including epidermal growth factor and transforming growth factor a (TGFa).

NSCLC cell with EGFR mutation ~ NSCLC cell with wild type EGFR i EGF
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Kinase-targeting Covalent Inhibitors

EGFR-targeting covalent inhibitors

Targeting cys-797 in EGFR with covalent inhibitors is associated
with the treatment of a wide variety of tumors.
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Afatinib covalently binds to cysteine 797 of EGFR via
a Michael addition (IC50 = 0.5 nM)

Abourehab, M. et al. Molecules, 2021, 26, 6677
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Kinase-targeting Covalent Inhibitors

PROTAC s are bifunctional molecules with a ligand at one end binding to a target of interest and an E3 ubiquitin ligase
binder at the other end to recruit E3—E2 ligases for ubiquitin- mediated proteasomal degradation.
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* BC5P was developed by linking a aminopyrazole based BTK inhibitor to a
known ligand of the E3 ligase clAP via five polyethylene glycol (PEG)
molecules.

* Treatment of THP-1 cells with BC5P led to a dose-dependent loss of BTK, with
a half-maximum degradation concentration (DC50) of 182 + 57 nM.
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K-Ras-targeting covalent inhibitors

K-Ras and its biological roles

The K-Ras protein is a GTPase which converts
the nucleotide GTP into GDP.

KRAS-GDP KRAS-GTP
Inactive Active
GEF
complex
; GAP
@ complex
GDP GTP

KRAS Mutants are Prominent Oncogenic Drivers

Wild-Type KRAS Signaling Mutant KRASS'¢ Signaling

Proliferation and differentiation

Oncogenic signaling and tumorigenesis

KRAS was considered undruggable because of its relatively smooth surface as well as the high affinity of GTP to the

GTP/GDP-binding pocket
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KRAS-targeting Covalent Inhibitors

Covalent KRAS(G12C) inhibitors

Compounds that covalently and irreversibly An allosteric pocket beneath the switch Il region near the mutant cysteine was discovered

bound to the cysteine residue of the KRAS®12C,
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KRAS-targeting Covalent Inhibitors

Covalent KRAS(G12C) inhibitors

Sotorasib (AMG510) obtained FDA approval in 2021 to Adagrasib (MRTX849) and other direct KRAS®2C inhibitors are currently
become the first therapy to directly target the KRAS being investigated in multiple clinical trials.
oncoprotein in tumors
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KRAS-targeting Covalent Inhibitors
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Lysine-Targeting Reversible Covalent Inhibitors

Reversible
Warhead

® Reversible covalent inhibitors

® Low K¢ to maximize the benefit of the warhead, and also
il to achieve long-lasting inhibition.

Frolein,  Hgand e o ® Diazaborines and related B-N heterocycles have also been

explored as enzyme inhibitors and as reversible linkers for

drug delivery to cancer cells
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Lysine-Targeting Reversible Covalent Inhibitors
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® A new warhead RMR1
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Lysine-Targeting Reversible Covalent Inhibitors
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potent reversible covalent inhibitors.

Reja, Rahi.m. et al, J. Am. Chem. Soc. 2022, 144, 1152

RMR1 can be grafted on to a peptide scaffold to create
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Conclusions

* Expanded covalent warhead toolbox allows for selective targeting of specific
amino acid residues.

* The approvals of successful drugs showcase the evolution of covalent drug
discovery from a serendipitous effort to a field with established roadmaps for

SUCCesS.

e Potential in new modalities such as PROTACs.



