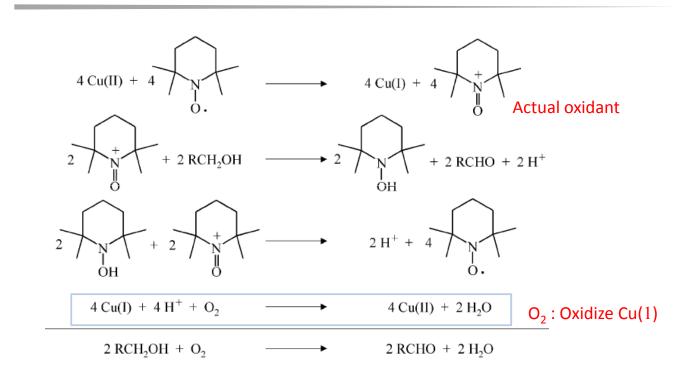
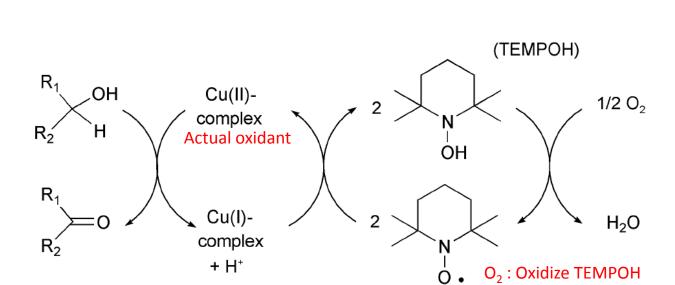

Aerobic Catalytic Oxidative Radical Reactions

Y. Tanaka (D2) 10. 5. 19




ent-				
ry	alcohol	aldehyde	time, h	yield ^b
1	p-MeOC ₆ H ₄ CH ₂ OH	p-MeOC ₆ H ₄ CHO	1.0	96%
2	p-MeOC ₆ H ₄ CH ₂ OH	p-MeOC ₆ H ₄ CHO	24.0 ^{c.e}	97%
3	p-MeOC ₆ H ₄ CH ₂ OH	p-MeOC ₆ H ₄ CHO	1.0 ^{eJ}	92%
4	p-MeOC ₆ H ₄ CH ₂ OH	p-MeOC ₆ H ₄ CHO	2.068	91%
5	p-MeOC ₆ H ₄ CH ₂ OH	p-MeOC ₆ H ₄ CHO	6.0^{h}	80%
6	p-MeOC ₆ H ₄ CH ₂ OH	p-MeOC ₆ H ₄ CHO	7.0^{i}	25%)
7	C ₆ H ₅ CH ₂ OH	C ₆ H ₅ CHO	4.0^{k}	94% ^d
8	p-NO ₂ C ₆ H ₅ CH ₂ OH	p-NO ₂ C ₆ H ₄ CHO	7.0	85%
9	piperonyl alcohol	piperonal	16.0 ^{<i>l</i>,m}	85%
10	(E)-hex-2-en-1-ol	(E)-2-hexenal	1.75	1 00% ª
11	geraniol	geranial	1.75	92%
12	cinammyl alcohol	cinammaldehyde	2.75	93%
13	myrteno]	myrtenal	2.0	92%
14	2-cyclohexenol	2-cyclohexenone	18.5"	0%

Semmelhack et al. J. Am. Chem. Soc. 1984, 106, 3376.

Proposed Reaction Mechanism by Semmelhack

Semmelhack et al. J. Am. Chem. Soc. 1984, 106, 3376.

Proposed Reaction Mechanism by Sheldon

Sheldon *et al. Org. Biomol. Chem.* **2003**, *1*, 3232.

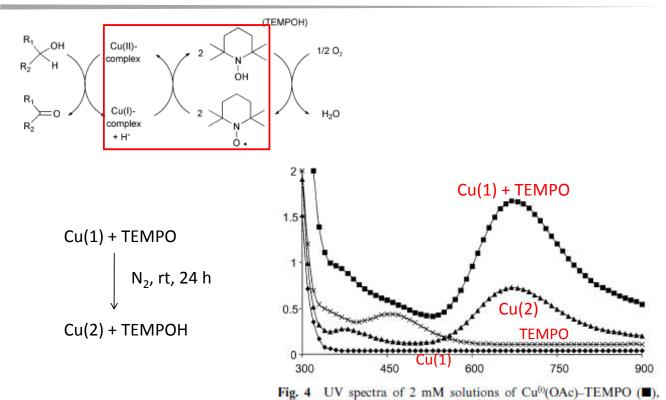
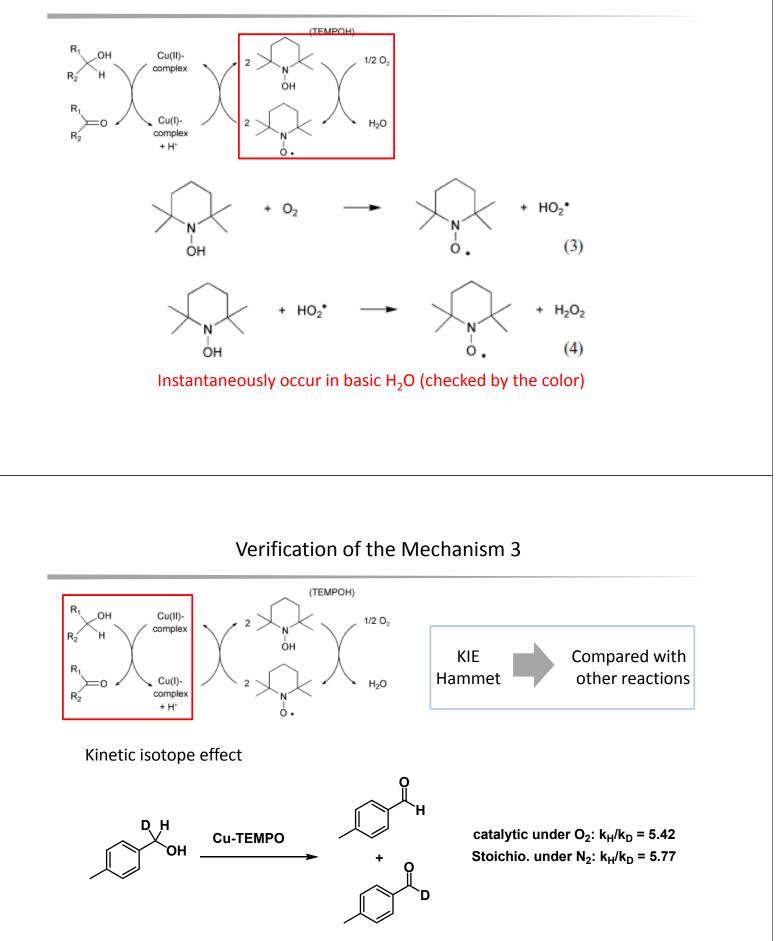
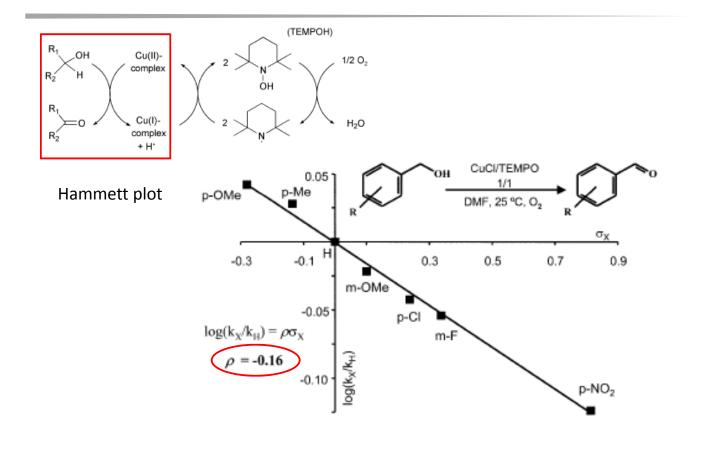
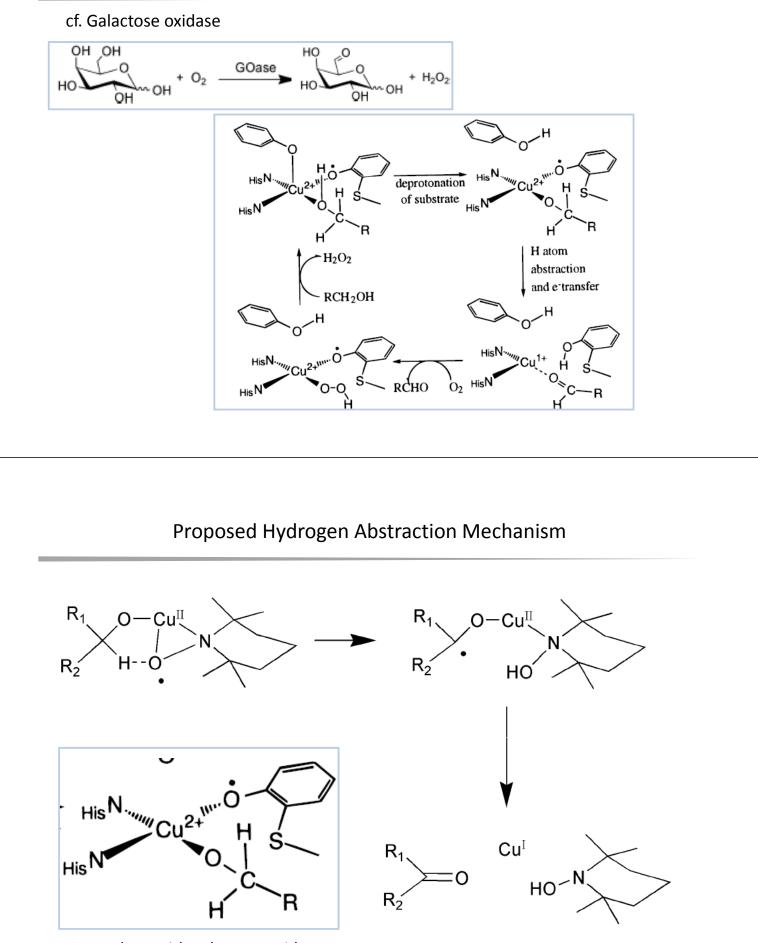
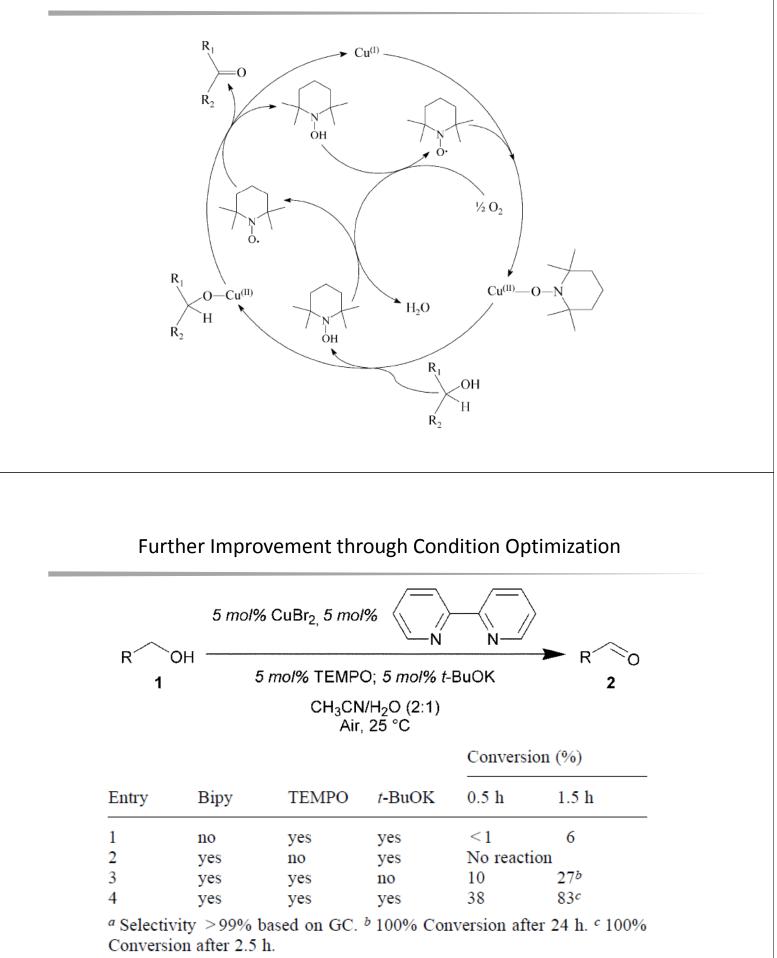




Fig. 4 UV spectra of 2 mM solutions of $Cu^{(i)}(OAc)$ -TEMPO (\blacksquare), $Cu^{(ii)}(OAc)_2$ (\blacktriangle), TEMPO (x) and $Cu^{(i)}OAc$ (\blacklozenge) in acetonitrile under an inert atmosphere.

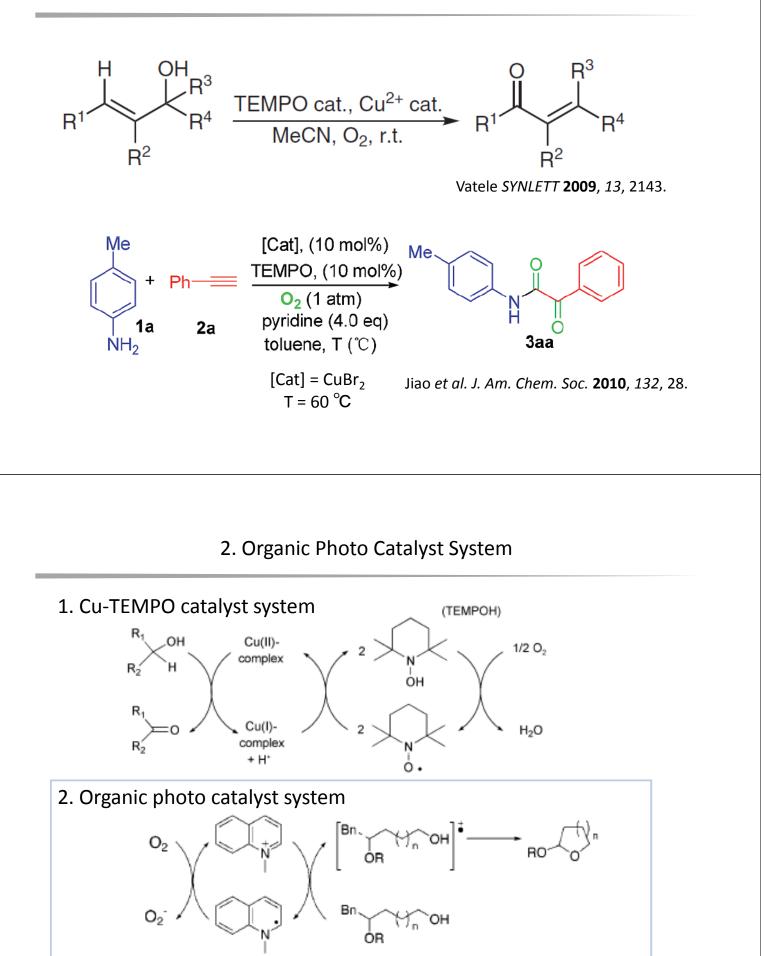
Verification of the Mechanism 2

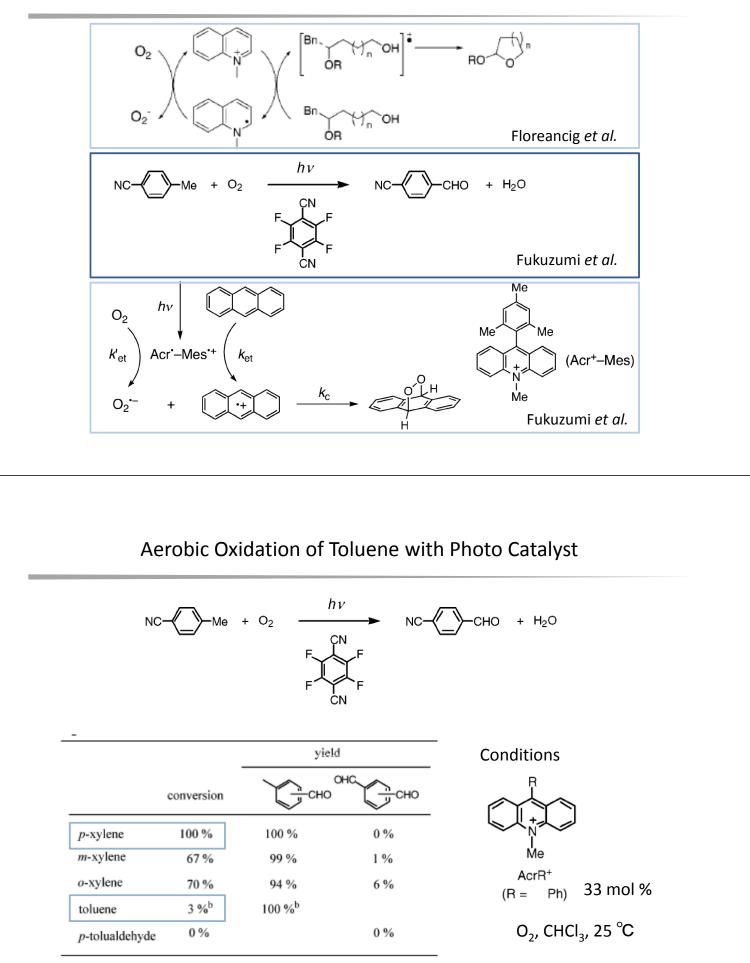


Verification of the Mechanism 3

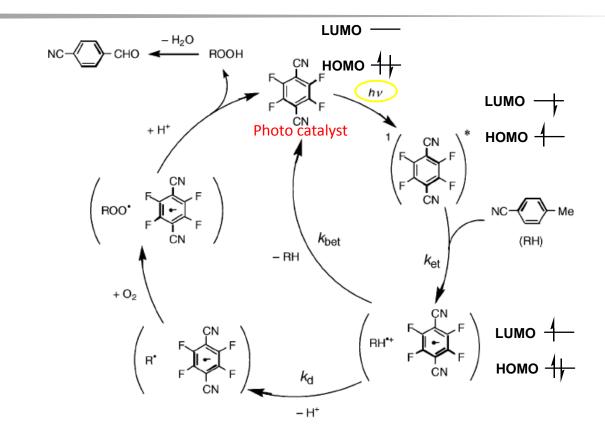


Verification of the Mechanism 3

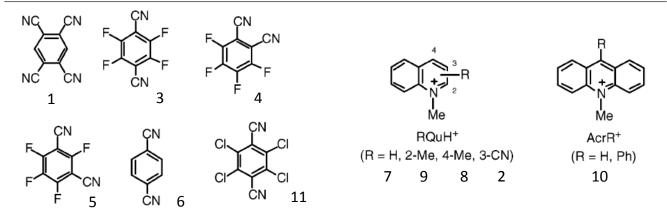

System	Kinetic isotope effect $(k_{\rm H}/k_{\rm D})^b$	Hammett ρ -value
CuCl-TEMPO-O2	5.42	-0.16
Oxoammonium chloride	1.7–2.3	-0.3
RuCl ₂ (PPh ₃) ₃ -TEMPO-O ₂	5.12	-0.58
CuCl-TEMPO-N2 ^a	5.77	_
Cu(II)BSP-O ₂	5.3	-0.14
Galactose oxidase	5.02	-0.09
(oxoammonium)	Bu OF Bu Au OF Bu Au Au Au Au Au Au Au A	$ \begin{array}{cccc} & H & H \\ & H & H \\ & Ph \\ & & Ph \\ & & & Ph \\ & & & H \\ & $


By analogy with galactose oxidase

Other Examples of Cu-TEMPO Catalyzed Reactions

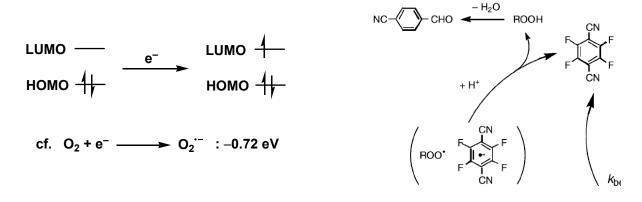


Aerobic Photocatalytic Reactions


Fukuzumi et al. J. Am. Chem. Soc. 2003, 125, 12850.

Proposed Catalytic Cycle

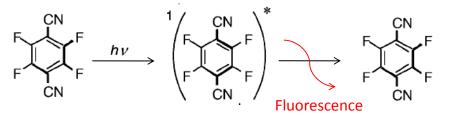
Organic Photo Catalysts


	photosensitizer	E ⁰ _{red} ^a (V) vs SCE	E ⁰ red * b (V) vs SCE	τ^{c} (ns)	<i>E</i> ₀₀ (S) ^{<i>d</i>} (eV)	<i>k</i> _q ^e (M ^{−1} s ^{−1})
1	1,2,4,5-tetracyanobenzene	-0.74	3.17	4.3	3.81	1.5×10^{10}
2	1-methyl-3-cyanoquinolinium ion	-0.60^{f}	2.72f	45 ^f	3.32 ^f	7.3×10^{9}
3	tetrafluoro-p-dicyanobenzene	-1.10	2.66	3.2	3.76	4.9×10^{9}
4	tetrafluoro-o-dicyanobenzene	-1.62	2.66	2.6	4.18	3.4×10^{9}
5	tetrafluoro-m-dicyanobenzene	-1.33	2.61	3.9	3.99	3.3×10^{9}
6	1,4-dicyanobenzene	-1.46	2.55	9.7	4.01	7.4×10^{8}
7	1-methylquinolinium ion	-0.96^{f}	2.54 ^f	20 ^f	3.50 ^f	2.2×10^{8}
8	1,4-dimethylquinolinium ion	-1.07	2.51f	19	3.58	1.2×10^{8}
9	1,2-dimethylquinolinium ion	-1.05^{f}	2.46	15	3.51 ^f	8.7×10^{7}
10	10-methylacridinium ion	-0.43g	2.32 ^g	378	2.75 ^g	h
11	tetrachloro-p-dicyanobenzene	-0.95	2.55	0.25	3.50	i
12	tetrachloro-m-dicyanobenzene	i		0.20	3.71	i

Organic Photo Catalysts

	photosensitizer	E ⁰ _{red} ^a (V) vs SCE	E ⁰ red * b (V) vs SCE	τ^{c} (ns)	$E_{00}(S)^{d}$ (eV)	k_{q}^{e} (M ⁻¹ s ⁻¹)
1	1,2,4,5-tetracyanobenzene	-0.74	3.17	4.3	3.81	1.5×10^{10}
2	1-methyl-3-cyanoquinolinium ion	-0.60 ^f	2.72 ^f	45f	3.32 ^f	7.3×10^{9}
3	tetrafluoro-p-dicyanobenzene	-1.10	2.66	3.2	3.76	4.9×10^{9}
4	tetrafluoro-o-dicyanobenzene	-1.62	2.66	2.6	4.18	3.4×10^{9}
5	tetrafluoro-m-dicyanobenzene	-1.33	2.61	3.9	3.99	3.3×10^{9}
6	1,4-dicyanobenzene	-1.46	2.55	9.7	4.01	7.4×10^{8}
7	1-methylquinolinium ion	-0.96^{f}	2.54 ^f	20 ^f	3.50 ^f	2.2×10^{8}
8	1,4-dimethylquinolinium ion	-1.07	2.51 ^f	19	3.58 ^f	1.2×10^{8}
9	1,2-dimethylquinolinium ion	-1.05f	2.46 ^f	151	3.51 ^f	8.7×10^{7}
10	10-methylacridinium ion	-0.43g	2.32 ^g	378	2.75 ^g	h
11	tetrachloro-p-dicyanobenzene	-0.95	2.55	0.25	3.50	i
12	tetrachloro-m-dicyanobenzene	j		0.20	3.71	i

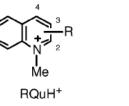
One electron reduction potential of ground state


Organic Photo Catalysts

	photosensitizer	E ⁰ _{red} ^a (V) vs SCE	E ⁰ _{red} * ^b (V) vs SCE		$E_{00}(S)^d$ (eV)	k_{q}^{e} (M ⁻¹ s ⁻¹)
1	1,2,4,5-tetracyanobenzene	-0.74	3.17		3.81	1.5×10^{10}
2	1-methyl-3-cyanoquinolinium ion	-0.60 ^f	2.72f	NC CN	3.32	CN 109
2 3	tetrafluoro-p-dicyanobenzene	-1.10	2.66		3.76	
4	tetrafluoro-o-dicyanobenzene	-1.62	2.66	2.6	4.18	√ [−] : 10 ⁹
5	tetrafluoro-m-dicyanobenzene	-1.33	2.61	3.9	3.99	109
6	1,4-dicyanobenzene	-1.46	2.55	9.7	4.01 F	\sim $F : 10^8$
7	1-methylquinolinium ion	-0.96^{f}	2.54 ^f	and	3.50	108
8	1,4-dimethylquinolinium ion	-1.07f	2.51f	ÇN	3.58	CN 108
9	1,2-dimethylquinolinium ion	-1.05f	2.46 ^f	\checkmark	3.51 ^f	8.7×10^{7}
10	10-methylacridinium ion	-0.43g	2.32 ^g	ſŊ.	2.75 ^g	h
11	tetrachloro-p-dicyanobenzene	-0.95	2.55		~ \ *	
12	tetrachloro-m-dicyanobenzene	j		CN /F		
	Dne electron reduction po		et exited stat	e (f	CN F	NC- Me
НОІ	мо — ном	10 41-			k _{et} ↓	
	cf. DDQ: +0.56 V			RH*+		

Organic Photo Catalysts

	photosensitizer	E ⁰ _{red} ^a (V) vs SCE	E ⁰ red * b (V) vs SCE	τ^c (ns)	$E_{00}(S)^{d}$ (eV)	k_{q}^{e} (M ⁻¹ s ⁻¹)
1	1,2,4,5-tetracyanobenzene	-0.74	3.17	4.3	3.81	1.5×10^{10}
2	1-methyl-3-cyanoquinolinium ion	-0.60^{f}	2.72^{f}	45f	3.32 ^f	7.3×10^{9}
3	tetrafluoro-p-dicyanobenzene	-1.10	2.66	3.2	3.76	4.9×10^{9}
4	tetrafluoro-o-dicyanobenzene	-1.62	2.66	2.6	4.18	3.4×10^{9}
5	tetrafluoro-m-dicyanobenzene	-1.33	2.61	3.9	3.99	3.3×10^{9}
6	1,4-dicyanobenzene	-1.46	2.55	9.7	4.01	7.4×10^{8}
7	1-methylquinolinium ion	-0.96^{f}	2.54 ^f	20f	3.50 ^f	2.2×10^{8}
8	1,4-dimethylquinolinium ion	-1.07f	2.51f	19⁄	3.58 ^f	1.2×10^{8}
9	1,2-dimethylquinolinium ion	-1.05^{f}	2.46 ^f	151	3.51 ^f	8.7×10^{7}
10	10-methylacridinium ion	-0.43g	2.32 ^g	37g	2.75 ^g	h
11	tetrachloro-p-dicyanobenzene	-0.95	2.55	0.25	3.50	i
12	tetrachloro-m-dicyanobenzene	j		0.20	3.71	i


Fluorescence life time

Organic Photo Catalysts

	photosensitizer	E ⁰ _{red} ^a (V) vs SCE	E ⁰ red * b (V) vs SCE	τ^{c} (ns)	<i>E</i> ₀₀ (S) ^{<i>d</i>} (eV)	k_{q}^{e} (M ⁻¹ s ⁻¹)
1	1,2,4,5-tetracyanobenzene	-0.74	3.17	4.3	3.81	1.5×10^{10}
2	1-methyl-3-cyanoquinolinium ion	-0.60^{f}	2.72f	45 ^f	3.32 ^f	7.3×10^{9}
3	tetrafluoro-p-dicyanobenzene	-1.10	2.66	3.2	3.76	4.9×10^{9}
4	tetrafluoro-o-dicyanobenzene	-1.62	2.66	2.6	4.18	3.4×10^{9}
5	tetrafluoro-m-dicyanobenzene	-1.33	2.61	3.9	3.99	3.3×10^{9}
6	1,4-dicyanobenzene	-1.46	2.55	9.7	4.01	7.4×10^{8}
7	1-methylquinolinium ion	-0.96^{f}	2.54 ^f	20 ^f	3.50 ^f	2.2×10^{8}
8	1,4-dimethylquinolinium ion	-1.07	2.51f	19	3.58 ^f	1.2×10^{8}
9	1,2-dimethylquinolinium ion	-1.05^{f}	2.46 ^f	151	3.51 ^f	8.7×10^{7}
10	10-methylacridinium ion	-0.43g	2.32 ^g	378	2.75 ^g	h
11	tetrachloro-p-dicyanobenzene	-0.95	2.55	0.25	3.50	i
12	tetrachloro-m-dicyanobenzene	j		0.20	3.71	i

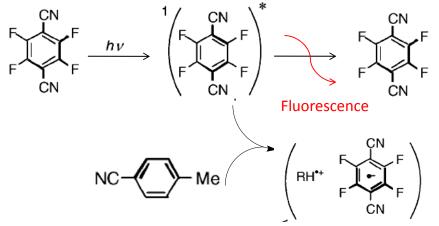
 $F \rightarrow F \\ F \rightarrow F \\ CN \\ CN$

(R = H, 2-Me, 4-Me, 3-CN)

1: 3.81 eV 8: 3.58 eV

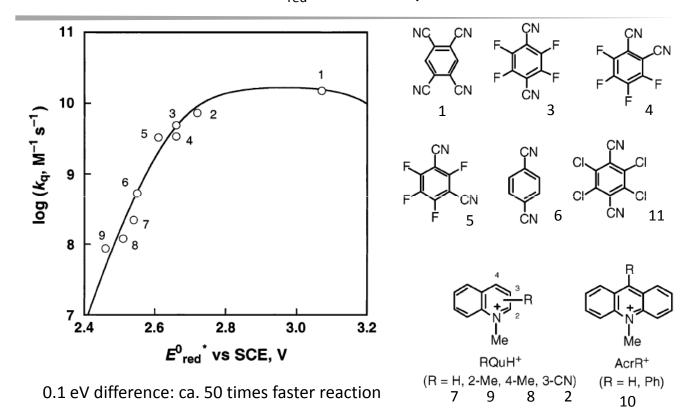
 λ_{max} = 312 nm

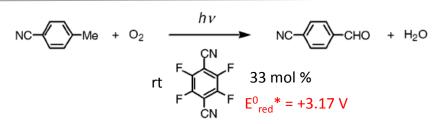
 $\begin{array}{c} \text{Nie} \\ \text{AcrR}^{+} & 1 \\ (\text{R} = \text{H, Ph}) \\ 10: 2.75 \text{ eV} \\ \lambda_{\text{max}} = 417 \text{nm} \end{array}$


Singlet exited energy $E^0_{red} - E^0_{red}^*$

Nearly HOMO-LUMO gap

1 eV = ca. 1200/ λ (nm⁻¹) = 23 kcal/mol


Organic Photo Catalysts


	photosensitizer	E ⁰ _{red} ^a (V) vs SCE	E ⁰ _{red} * ^b (V) vs SCE	τ^{c} (ns)	<i>E</i> ₀₀ (S) ^{<i>d</i>} (eV)	<i>k</i> _q ^e (M ^{−1} s ^{−1})
1	1,2,4,5-tetracyanobenzene	-0.74	3.17	4.3	3.81	1.5×10^{10}
2	1-methyl-3-cyanoquinolinium ion	-0.60^{f}	2.72f	45f	3.32 ^f	7.3×10^{9}
3	tetrafluoro-p-dicyanobenzene	-1.10	2.66	3.2	3.76	4.9×10^{9}
4	tetrafluoro-o-dicyanobenzene	-1.62	2.66	2.6	4.18	3.4×10^{9}
5	tetrafluoro-m-dicyanobenzene	-1.33	2.61	3.9	3.99	3.3×10^{9}
6	1,4-dicyanobenzene	-1.46	2.55	9.7	4.01	7.4×10^{8}
7	1-methylquinolinium ion	-0.96^{f}	2.54 ^f	20 ^f	3.50 ^f	2.2×10^{8}
8	1,4-dimethylquinolinium ion	-1.07	2.51f	19	3.58 ^f	1.2×10^{8}
9	1,2-dimethylquinolinium ion	-1.05^{f}	2.46	15	3.51 ^f	8.7×10^{7}
10	10-methylacridinium ion	-0.43g	2.32 ^g	378	2.75 ^g	h
11	tetrachloro-p-dicyanobenzene	-0.95	2.55	0.25	3.50	i
12	tetrachloro-m-dicyanobenzene	j		0.20	3.71	i

Quenching rate constants

E⁰_{red} vs Reactivity

Table 2. Reactant Conversion and Product Yields in Photooxygenation of *p*-Tolunitrile (3.0×10^{-2} M), Catalyzed by Tetrafluoro-*p*-Dicyanobenzene (1.0×10^{-2} M) in O₂-Saturated MeCN

time, h	conversion, %	yield, 9	%	
		CHO CN	CH ₂ OH	254, 365, 405, 436, 546, 577, 579 nm
0	0	0	0	Mercury lamp through
1	6	6	0	acetophenone – methanol filter
2	9	9	1	(>300 nm)
4	18	15	3	
8	27	22	4	

Reaction with Xylens

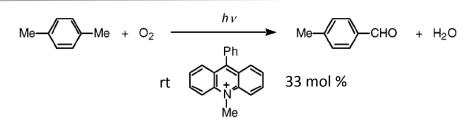
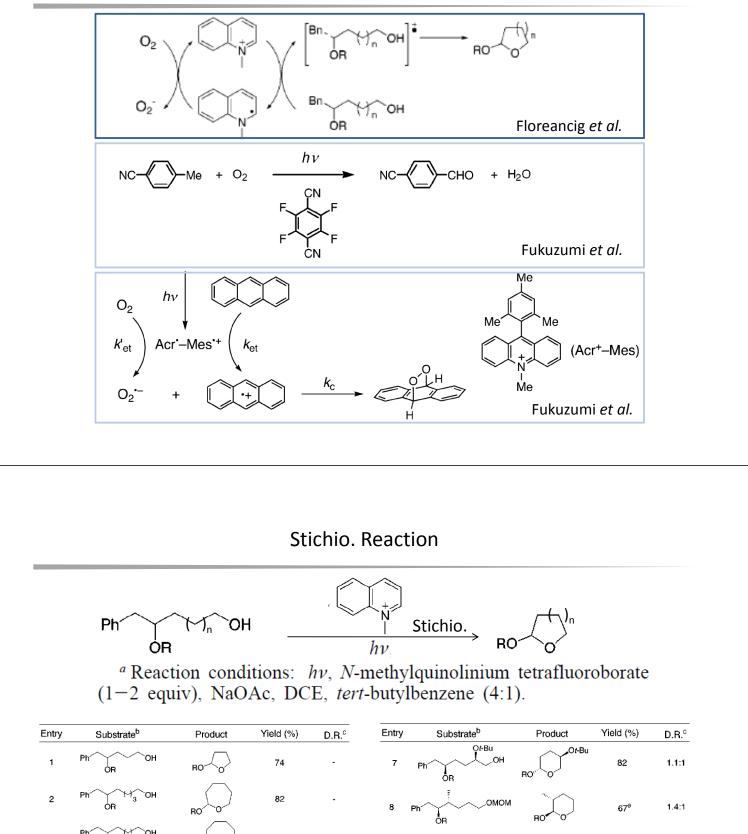


Table 3. Photooxygenation Yields of Xylenes and Toluene (3.0 \times 10⁻² M), Catalyzed by AcrPh⁺ (1.0 \times 10⁻² M) with O₂ in O₂-Saturated Chloroform at 298 K^a

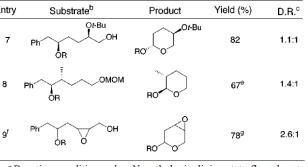
Table 4. Fluorescence Quenching Rate Constants of AcrH ⁺ and
AcrPh ⁺ by Ring-Substituted Toluenes and Aldehydes in Deaerated
MeCN at 298 K

снс

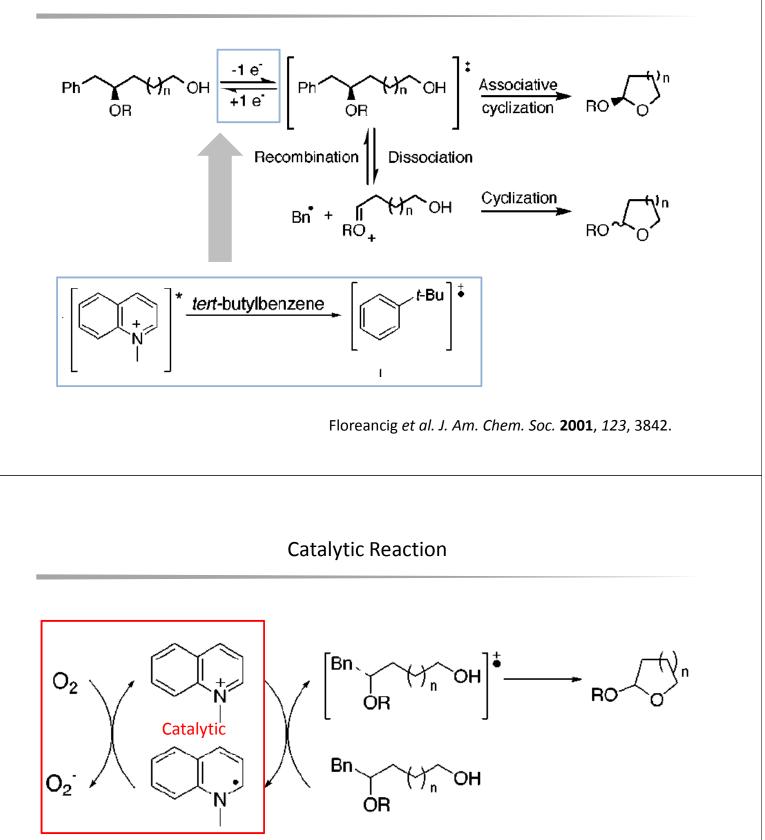
< 10⁸


 $< 10^{8}$ $< 10^{8}$ $< 10^{8}$ b

		yield				k _q , 1	M ⁻¹ s ⁻¹	
	conversion	СНО	нс		AcrH	+	1	AcrPh ⁺
<i>p</i> -xylene	100 %	100 %	0 %		Me	СНО	Me	Ċ
<i>m</i> -xylene	67 %	99 %	1 %	<i>p</i> -xylene	8.6 x 10 ⁹	< 10 ⁶	1.4 x 10 ¹⁰	< 1
o-xylene	70 %	94 %	6 %		(4.2 x 10 ⁹) ^a		(6.9 x 10 ⁹) ^a	
toluene	3 % ^b	100 % ^b			7.7 x 10 ⁹	5.2 x 10 ⁷		. 1
<i>p</i> -tolualdehyde	0 %		0 %	<i>m</i> -xylene	7.7 x 10 ²	5.2 x 10 ²	4.7 x 10 ⁹	< 1
				o-xylene	7.9 x 10 ⁹	3.8 x 10 ⁸	6.5 x 10 ⁹	< 1
^a Irradiation time	e is 10 h. ^b Benz	zaldehyde.		toluene	2.4 x 10 ⁸	< 10 ^{6 b}	< 10 ⁸	< 1


Xenon lamp through UV cutoff filter (> 310 nm)

^a Values in parentheses were determined in CHCl₃. ^b Benzaldehyde.


Aerobic Photocatalytic Reactions

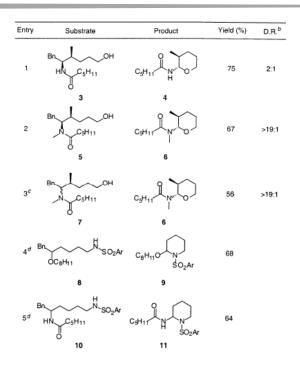
Entry	Substrate ^b	Product	Yield (%)	D.R.°
1	Ph OH OR	RO	74	
2	Ph H OR	ROO	82	
3	Ph H OH OR	ROO	55	-
4	Ph OR OR	ROOOH	74	10:1 ^d
5	Ph OR OR	RO" O OH	92	1.2:1 ^d
6	Ph OR OR	RO O	84	1.7:1

^a Reaction conditions: hv, N-methylquinolinium tetrafluoroborate (1-2 equiv), NaOAc, DCE, *tert*-butylbenzene (4:1). ^b R = n-octyl. ⁽¹⁾ Diastereomeric ratio. The major diastereomer is represented by the structure in the Product column. Stereochemical assignments were based on ¹H NMR coupling constants except where noted. ^d Stereochemistry was determined by NOE analysis. ^e Yield at 88% conversion. ^f The relative stereochemistry of the starting material and the products was not determined. g Yield at 91% conversion.

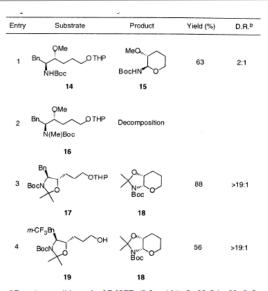
Floreancig et al. Org. Lett. 2001, 3, 4123.

Condition Optimization

		NMQPF ₆ ,O ₂ aOAc, DCE, cosensitizer	C ₈ H ₁₇ O 2	
entry	NMQPF ₆ (mol %)	cosensitizer	time (h)	yield (%) ^b
1	200 ^c	TBB^d	4	55^e
2	50	TBB	1.5	79
3	10	TBB	1.5	82
4	2.5	TBB	2	86
5	2.5	toluene	3	82


^{*a*} Reaction conditions: **1** (50 mg), NMQPF₆, NaOAc (100 mg), 1,2dichloroethane (6 mL), cosensitizer (1 mL), gentle air bubbling, irradiation with a medium-pressure mercury lamp. ^{*b*} Reported yields are of isolated, purified products unless noted otherwise. ^{*c*} Air was not used in this example. ^{*d*} TBB = *tert*-butylbenzene. ^{*e*} 74% yield based on 76% conversion.

Substrate Scope


Entry	Substrate ^b	Product	Yield (cat.) ^c	Yield (stoic.)d
Br 1 ^ë	OR O	ROOO	90	78
2 2	n H OR	ROO	85	82
3		₩ ₩ ₩	75	78
Bn 4		ROMOHHO	73	82

^{*a*} Reaction conditions: 50–150 mg substrate, 2.5 mol % NMQPF₆, 2 wt equiv of NaOAc, 2 wt equiv of Na₂S₂O₃, DCE/toluene (6:1), gentle air bubbling, irradiation with a medium-pressure mercury lamp. ^{*b*} R = n-C₈H₁₇. ^{*c*} Reported yields are of isolated, purified products. ^{*d*} Procedures for the stoichiometric reactions in entries 1 and 2 can be found in ref 5. ^{*e*} A 1.3:1 ratio of diastereomers was isolated. The relative stereochemistry of the isomers was not determined.

Other Examples of This Type Reaction

^{*a*} Reaction conditions: *hv*, NMQPF₆ (2.5 mol %), O₂, NaOAc, Na₂S₂O₃, DCE, PhMe. ^{*b*} Diastereomeric ratio. The major diastereomer is shown in the product column. Stereochemical assignments were based on ¹H NMR coupling constants. ^{*c*} 1:1 mixture of diastereomers. ^{*d*} Ar = *p*-NO₂C₆H₄.

 a Reaction conditions: $h\nu,$ NMQPF6 (2.5 mol %), O2, NaOAc, Na2S2O3, DCE, PhMe. b Diastereomeric ratio. The major diastereomer is shown in the product column. Stereochemical assignments were based on 1H NMR coupling constants.

Floreancig et al. Org. Lett. 2002, 4, 3443.