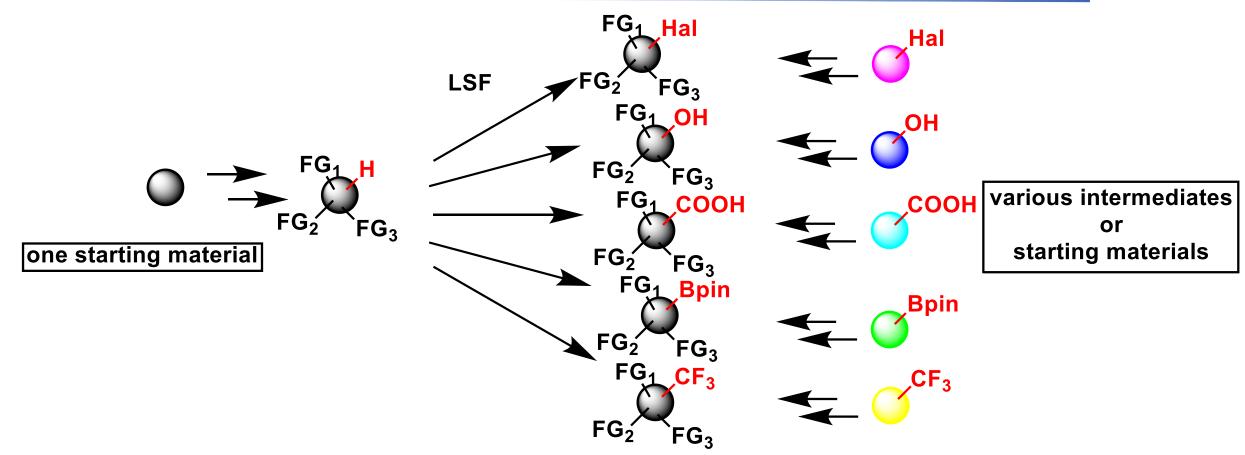
Late-stage C-H functionalization for drug development


2016/12/17 B4 Kentaro Sakai

Today's topics

- 1. Introduction of late-stage C-H functionalization (LSF)
- 2. Strategies for obtaining regioselectivity in LSF
- 3. Application of LSF: Drug discovery
- 4. Summary

1. Introduction of late-stage C-H functionalization (LSF)

The concept of late-stage C-H functionalization (LSF)

Use of LSF

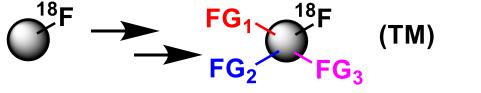
Direct and fast development of derivatives

Conventional method

cumbersome protection/deprotection lengthen the synthetic route

Application of LSF in various fields

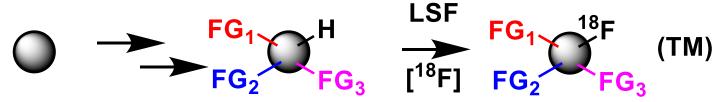
Perspective: Wencel-Delord, J.; Glorius, F., Nat. Chem., 2013, 5, 369.


LSF can modify natural products

LSF enables direct functionalization of natural complex products.

2014, *57*, 5085.

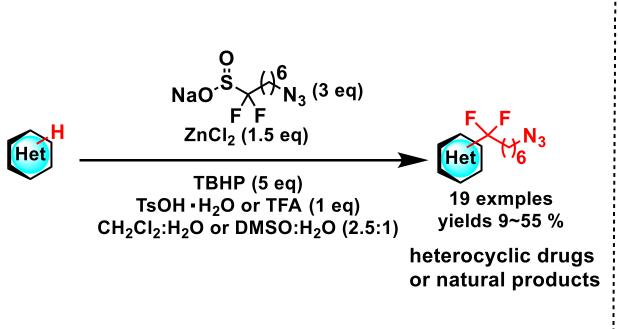
LSF enables the use of radioactive materials

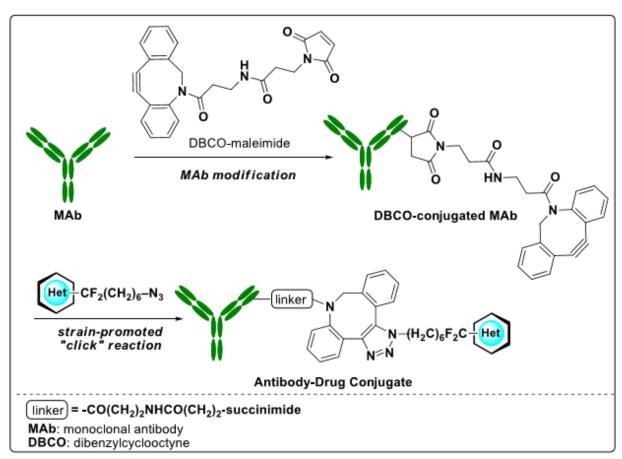

Conventional method

low radiochemical yields

¹⁸F decays under long synthetic process. $(t_{1/2}=110 \text{ min})$

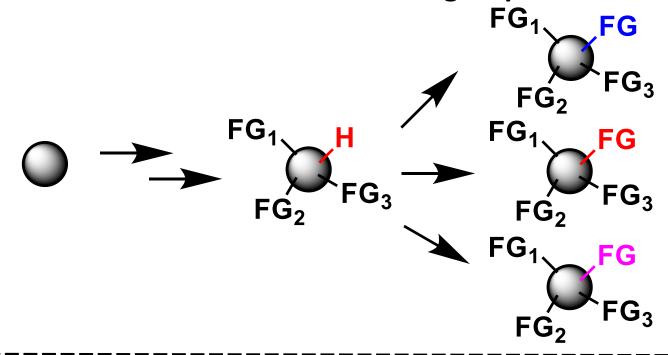
Method using LSF




high radiochemical yields

LSF can contribute to making materials containing radioactive isotopes.

Application of LSF for ADC


Q. Zhou, J. Gui, C.-M. Pan, E. Albone, X. Cheng, E. M. Suh, L. Grasso, Y. Ishihara and P. S. Baran, J. Am. Chem. Soc., 2013, 135, 12994.

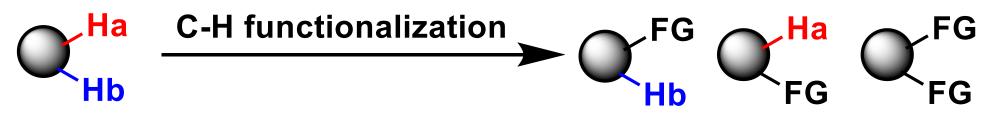
LSF can contribute to the synthesis of antibody-drug conjugates.

Summary of section 1

Late-stage C-H functionalization

= Conversion of C-H bonds to various functional groups at the end of synthetic process

LSF has potential applications in various fields.

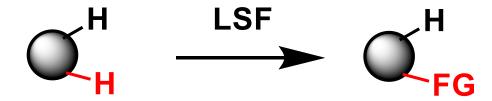


Modification of complex products such as natural products and functional molecules.

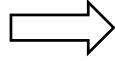
2. Strategies for obtaining regioselectivity in LSF

The difficulties of LSF


conventional conditions (non-suitable for LSF)


unseparatable compex mixture

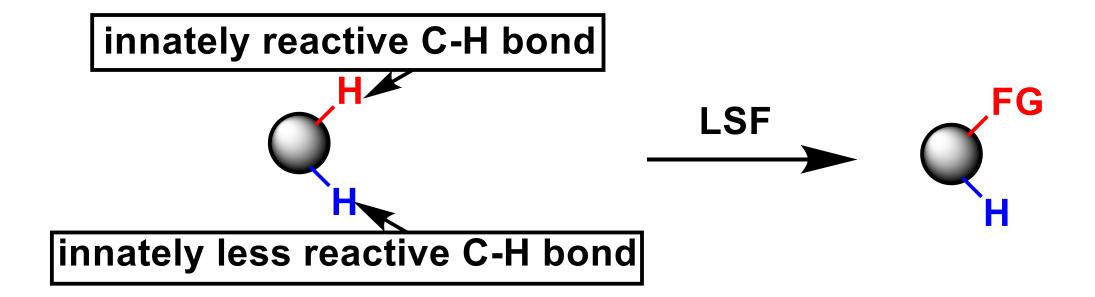
low yields, variable functions, low-quality products,...


Many C-H bonds

Regioselectivity

Many reactive functional groups

Functional group tolerance, chemoselectivity


Strategies for obtaining regioselectivity in LSF

1. Functionalize innately reactive C-H bonds

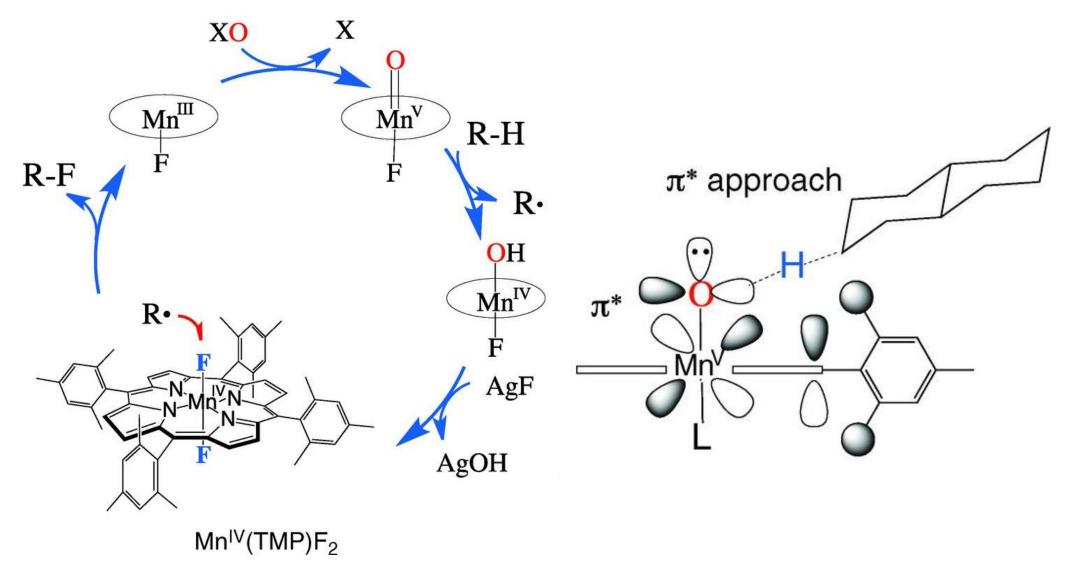
2. Use of bulky reagents sensitive to steric factor

3. Use of directing groups (DG)

4. Use of other convertible functional groups which can be introduced regioselectively

Innate reactivity depends on the structures of substrates. For example, electron density and acidity

Merit

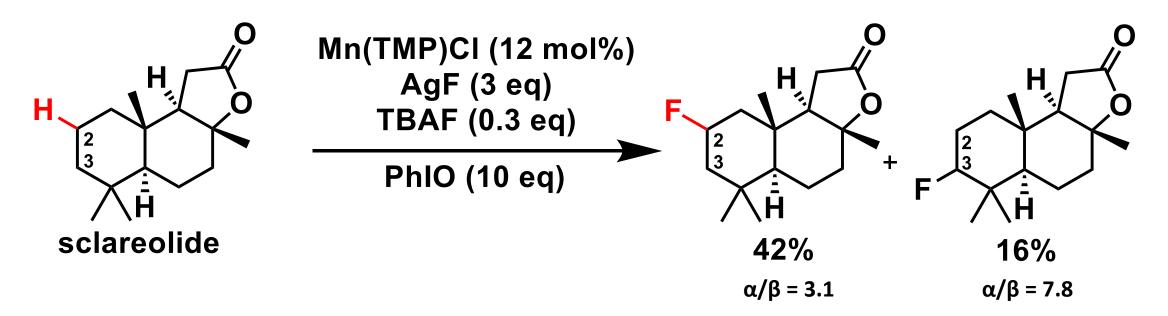

No extra conversion is required.

Problem

Regioselectivity mainly depends on substrates.


Strategy 10-2: LSF by innate C-H functionalizations

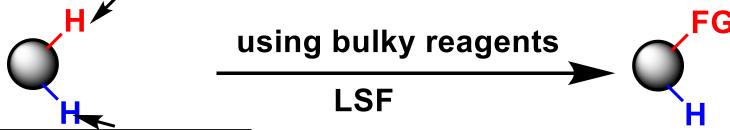
Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard, W. A., III; Groves, J. T., *Science* **2012**, *337*, 1322.



Proposed catalytic cycle

Strategy 1-4: LSF by innate C-H functionalizations

Strategy 1-5: LSF by innate C-H functionalizations



Carbon radical was involved

- → Innately reactive C-H bonds were electron rich C-H bonds For example
 - (A) distant from electron withdrawing groups
 - (B) tertiary or secondary C-H bonds

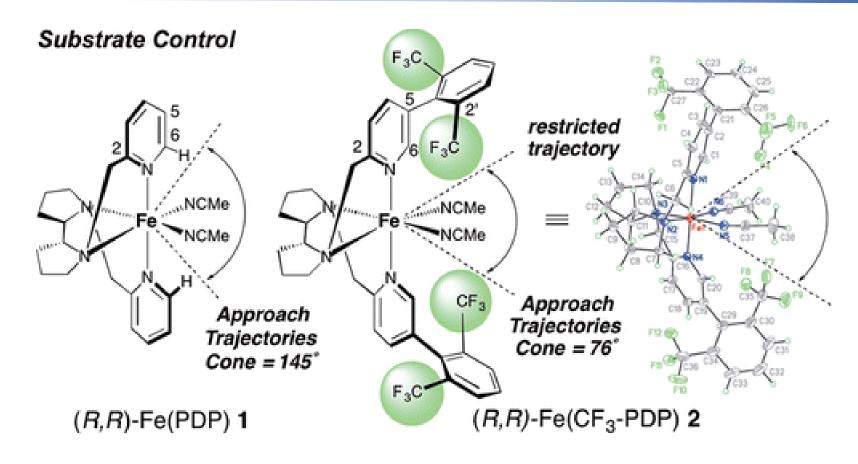
Strategy@-1: LSF by bulky reagents

Sterically less hindered C-H bond

Sterically hindered C-H bond

Use of bulky reagents

Sterically accesible C-H bonds are likely to be functionalized.

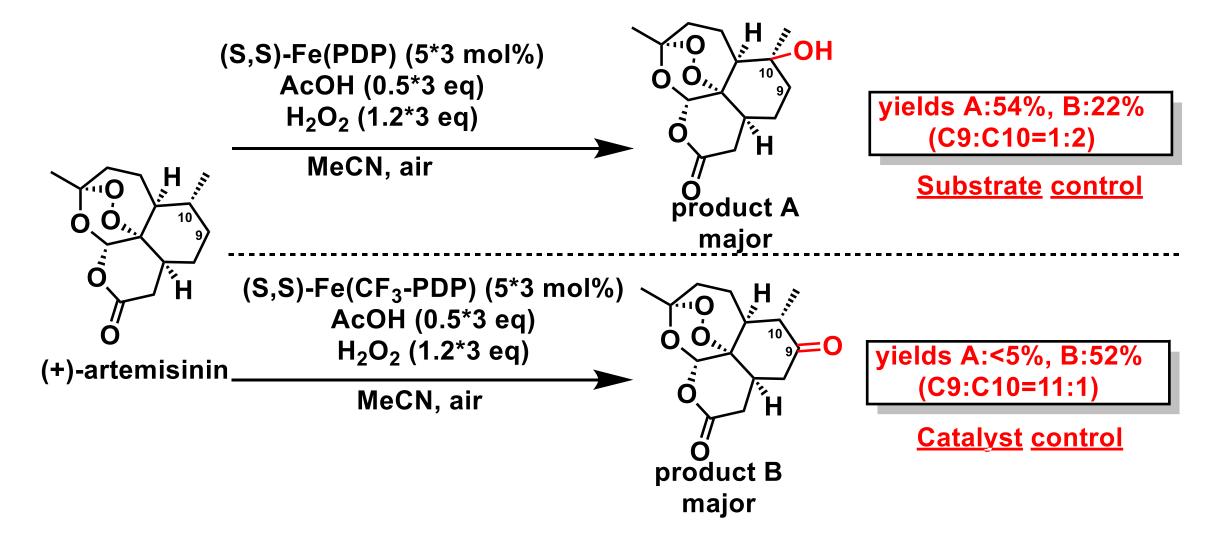

Merit

It is possible to functionalize innately less reatctive C-H bonds.

Problem

It is necessary to strengthen the activity of the reagent because the active site is hindered.

Strategy@-2: LSF by bulky reagents



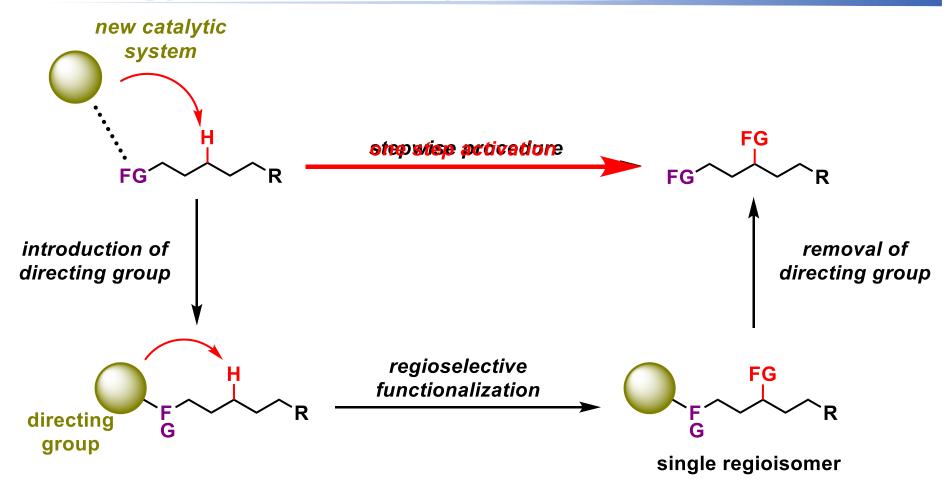
Gormisky, P. E.; White, M. C., J. Am. Chem. Soc., 2013, 135, 14052

Approach trajectories cone became narrow.

 \rightarrow Fe(CF₃-PDP) is more bulky than Fe(PDP).

Strategy@-3: LSF by bulky reagents

Strategy 3-1: Guided by directing groups (DG)


Use of DG — Regioselectivity was obtained.

Strategy 3-2: Guided by directing groups (DG)

Deng, Y.; Yu, J.-Q., Angew. Chem. Int. Ed., 2015, 54,888.


Other locations (for example, meta and para) selective reaction is limited.

Strategy 3-3: Guided by directing groups (DG)

1. Stepwise procedure
Usage of ubiquitous FG as DG is desirable.
2. Usage of stoichiometric amount of DG

Strategy 4-1: Use of other FG regioselectivity

Merit

It is not necessary to transform regioselectively from other FGs to target FG.

Strategies of the introduction of target FGs increase.

Problem

Synthetic steps increase because of stepwise synthesis.

Strategy 4-2: Use of other FG regioselectivity

Aromatic Fluorination		Transition Metal	F Source	,	Aliphatic Fluorination		Transition Metal	F Source	A/≂CI	
R-=-R'	•	F R'	Au cat.	Et ₃ N HF[¹¹⁰]	X = H, CI, R		x R		NFTh[11n] NFS [110-r] F-TEDA[11s]	F @ 2 BF4
R		R-II	Pd cat.	CsF ^[4a-e]	R X R'		HX F	Co(/Ti) cat. or Lewis base cat.	PhCOF ^[11t-w]	F-TEDA
R SnR ₃	-	R	Ag cat. Cu cat.	F-TEDA ^[5n] N-F-pyridinium ^[11c]	X = 0, NR		F R'	Pd cat. Pd cat Pd cat.	AgF(11x-z) El ₃ N·HF(11sa) TBAF·(<i>t</i> BuOH) ₄ ^[11ab] Et ₃ N·HF ^[11ac]	R II N B
$R = \frac{\int_{1}^{1} B(OR)_{2}}{I}$		R	Ag med. Cu med. Pd cat. Cu cat.	F-TEDA ^[11d] KF ^[11e] F-TEDA ^[11f] N-F-pyridinium ^[11g]	X = H, Cl, Br, OR			Ir cat. Ir cat.	Et ₃ N·HFI ^{1186]} TBAF·(tBuOH) ₄ ^[118] F-TEDA ^[118d]	N-F-pyridinium
R U		R	Cu cat.	CsF, PhenoFluor ^(11h,l)	R-COOH		R−F F R"	Ag cat. Fe cat. Co cat.	F-TEDA ^[11ae] N-F-pyridinium ^[11af] F-TEDA ^[11ag]	O N N N N N N N N N N N N N N N N N N N
R Hall		R. F	Cu cat. Pd cat.	AgF[11]] CsF[11k]	OH R R'		F L	Pd cat.	F-TEDA ^[1149] KF, PhenoFluor ^[114h]	PhenoFluor
R IMes X		R-F	Cu cat.	KE[8c]	R~~		R^R'	Cu cat.		O N N N
		~ <u>~</u>	Cu cat.				R	Mn cat.	F-TEDA ^[11ai] AgF ^[11aj,ak]	NFSI
R	-	RENT	Ag med.	AgF ₂ ^[111,m]						No.
										HO'® 2 BF4

C. Neumann, T. Ritter, *Angew. Chem. Int. Ed.,* **2015**, *54*, 3216

To introduce F at the late stages, other FGs are often used.

Strategy 4-3: C-H \rightarrow C-Bpin \rightarrow C-F

Larsen, M. A.; Hartwig, J. F., *J. Am. Chem. Soc.*, **2014**, *136*, 4287.

Some regioselective borylation reactions can use in LSF.

Strategy 4 - 4: C-H \rightarrow C-Bpin \rightarrow C-F

T. Furuya; H. M. Kaiser; T. Ritter, Angew. Chem. Int. Ed., 2008, 47, 5993.

P. S. Fier, J. Luo, J. F. Hartwig, J. Am. Chem. Soc., 2013, 135, 2552

Summary of section 2

- 1, Functionalize innately reactive C-H bonds
- 2, Use of bulky reagents

Merit: Functionalization is mainly one step.

Demerit: Regioselectivity highly depends on substrates and reagents.

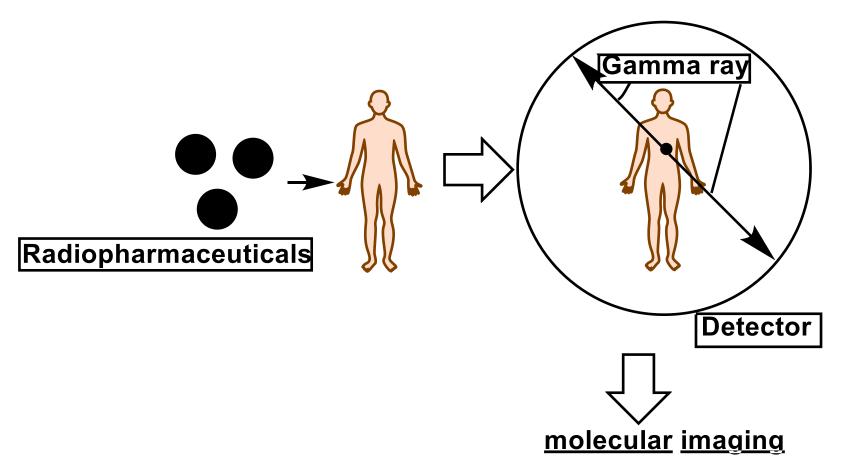
3, Use of directing groups(DG)

4, Use of other functional groups

Merit: Regioselectivity can be reliably obtained.

Demerit: Synthesis efficacy decreases because of stepwise process.

3. Application of LSF: Drug discovery

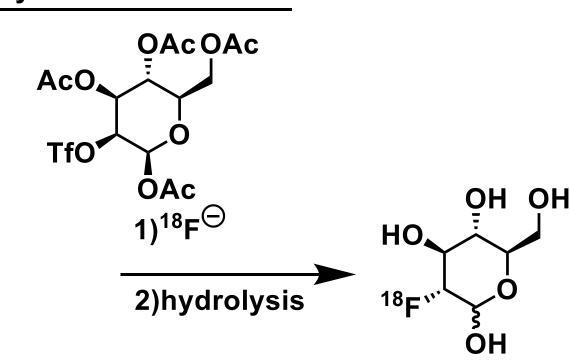

Application of LSF to drug discovery

1. Development of positron emmision tomography (PET) tracer

2. Lead optimization structure-activity relationship (SAR) and structure-property relationship (SPR)

LSF is used in the development of PET tracer (1)

Image of PET inspection


¹¹C, ¹³N, ¹⁵O and ¹⁸F are used for PET

LSF is used in the development of PET tracer (2)

Generation of ¹⁸F source

 $^{18}F_2$ and $^{18}F^{\bigcirc}$ can be obtained.

Synthesis of ¹⁸F-FDG

LSF is used in the development of PET tracer (3)

E. Lee, A. S. Kamlet, D. C. Powers, C. N. Neumann, G. B. Boursalian, T. Furuya, D. C. Choi, J. M. Hooker, T. Ritter, *Science*, **2011**, 334, 639

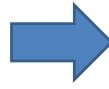

LSF is used in the development of PET tracer (4)

radiochemical yields(2steps): 33 % ± 7 %

2steps: Generation of [18F]A + this step

Challenges still remain.

New PET tracers may be developed using LSF.
Information obtained from PET is used for drug development.



the selection of potential drug candidates at an earlier stage of development

an understanding of a drugs mechanism of action aid in guiding dose selection

LSF is used in the lead optimization (1)

For the success of lead optimization

The construction of structure-activity relationship (SAR) and structure-property relationship (SPR) are essential

LSF contributes to rapid development of derivatives, SAR and SPR.

75

70°

99

86

LSF is used in the lead optimization (2)

8b

8d

8e

8g

Η

Η

Н

Н

Н

Η

H

Η

Η

Η

Η

Η

Η

H

H

Η

Η

H

F

Me

Me

Me

Me

550

22

30

2900

38

64

66

Table 1. Enzymatic and Celluar Activities and Pharmaceutical Properties of Monofluorinated Compounds

2400

ND

120

51

81

55

72

H. likura et al., ACS Med. Chem. Lett., 2013, 4, 1059.

5

5

22

13

13

22

^aCompounds were evaluated in 24 h exposure studies in mice at 100 mg/kg and formulated as solutions of 5% DMSO, 5% Cremophor EL, 15% PEG400, 15% HPCD, and 60% water. ^bAt 50 mg/kg. ^cSodium salt was used.

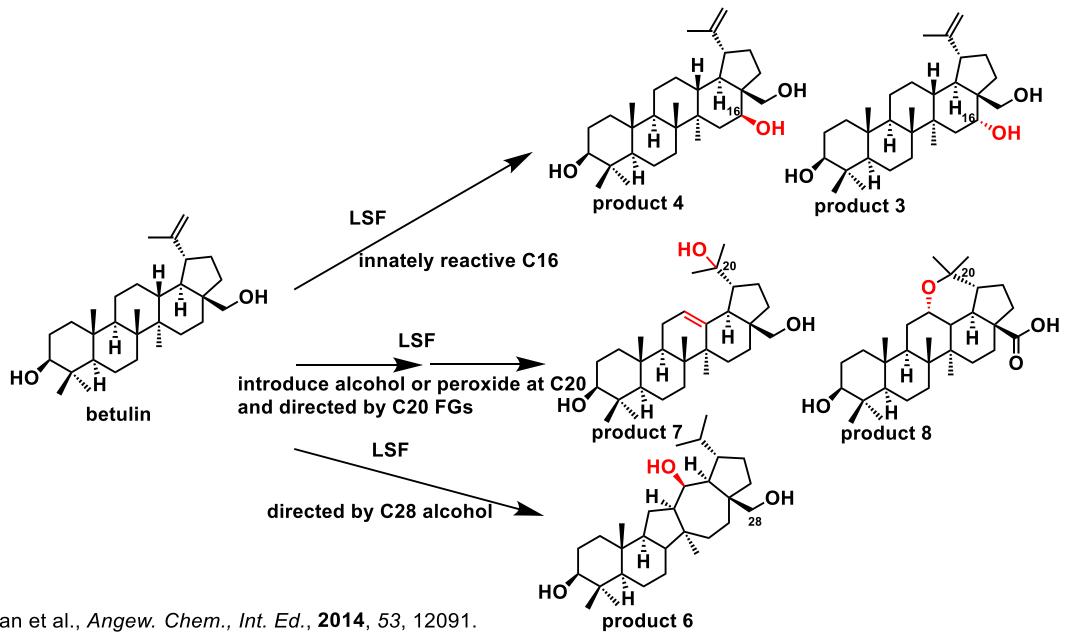

LSF is used in the lead optimization (3)

Table 3 σ_1 and σ_2 receptor affinities of the synthesized spirocyclic thiophenes and reference compounds

			$K_1 \pm \text{SEM [nM]} (n=3)$		Selectivity	
Compd.	X	Aryl	$\sigma_{_{1}}$	σ_2	σ_1/σ_2	
1a	OCH ₃	CH ₃	21 ± 2.3	> 1 µM	> 47	
1b	OCH ₃	C_6H_5	1.5 ± 0.08	$> 1 \mu M$	> 660	
2	OCH ₃	H	0.32 ± 0.10	> 1 µM	> 3125	
3a	Н	C_6H_5	4.5 ± 2.9	> 1 µM	> 222	
3b	Н	p-MeOC ₆ H ₄	1.5 ± 0.54	926	617	
3c	Н	p-MeC ₆ H ₄	3.6 ± 0.40	1.6 µM	444	
3d	Н	p-NO₂C₅H₄	1.7 ± 0.79	> 1 µM	> 588	
3e	Н	p-CNC ₆ H ₄	3.4 ± 0.90	> 1 µM	> 294	
3f	Н	1-naphthyl	4.0 ± 1.9	51	13	
4a	OCH_3	C ₆ H ₅	1.0 ± 0.40	>1 µM	> 1000	
4b	OCH ₃	p-MeOC _s H ₄	2.2 ± 0.13	751	341	
4c	OCH ₃	p-MeC _v H ₄	2.0 ± 0.81	$> 1 \mu M$	> 500	
4d	OCH ₃	p-NO₂C _s H ₄	1.0 ± 0.16	$> 1 \mu M$	> 1000	
4 e	OCH ₃	p-AcC ₆ H ₄	1.6 ± 0.86	> 1 µM	> 625	
4f	OCH ₃	p-CNC ₆ H ₄	0.25 ± 0.14	923	3692	
	OCH ₃	p-CF ₃ C ₆ H ₄	5.7 ± 2.3	$>1 \mu M$	> 175	
4g 4h	OCH ₃	1-naphthyl	5.0 ± 0.50	2.1 µM	420	
4i	OCH ₃	3-pyridyl	2.2 ± 0.42	$> 1 \mu M$	> 450	
4j	OCH ₃	p-biphenyl	30 ± 18	> 1 µM	> 33	
5	Н	Н	0.35 ± 0.06	230	657	
6	OCH ₃	H	0.22 ± 0.06	806	3664	
13	OH	H	3.2 ± 0.41	266	83	
14	HC³=C⁴H	H	1.9 ± 0.66	84.6 ± 25.4	45	
haloperidol			3.9 ± 1.5	78 ± 2.0	20	
di-o-tolylguanidine			61 ± 8	42 ± 15	0.7	

K. Itami, B. Wünsch et al., *Org. Biomol. Chem.*, **2011**, 9, 8016.

LSF is used in the lead optimization (4)

P. S. Baran et al., *Angew. Chem., Int. Ed.*, **2014**, *53*, 12091.

LSF is used in the lead optimization (5)

Table 1: Relative solubility enhancement of the oxidized compounds.

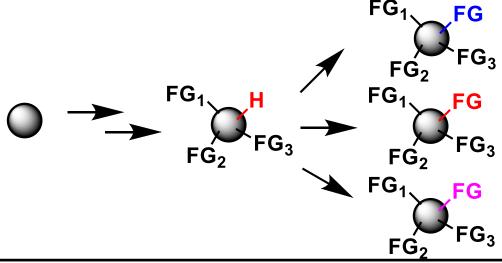
Entry	Substrate	R ¹	Relative Solubility Enhancement: Assay 1 (FaSSIF) ^[a]	Relative Solubility Enhancement: Assay 2 (FeSSIF) ^[b]
1	3	CH₂OH	274×	no change
2	4	CH_2OH	8.00×	0.077×
3	7	CH ₂ OH	121×	0.357×
4	6	CH₂OH	no change	0.077×
5	5	CO_2H	$0.056 \times ^{[c]}$	0.115× ^[c]
6	8	CO_2H	0.112× ^[c]	17.4× ^[c]
7	9	CO_2H	0.019× ^[c]	3.38× ^[c]
8	10	CO_2H	$0.002 \times^{[c]}$	0.462× ^[c]

[a] Solubility ratio substrate/1 in the fasted state simulated intestinal fluid. [b] Solubility ratio substrate/1 in the fed state simulated intestinal fluid. [c] Solubility ratio substrate/2. R¹ refers to the position shown in the structure of Figure 5 (C17).

Summary of section 3

1. Rapid synthesis of derivatives

2. Synthesis of molecules which cannot obtained by conventional method



LSF contributes to drug development.

4. Summary

Summary of today's literature seminar

LSF contributes to various fields including drug discovery.

LSF has several challenges including regioselectivity.

The reactions used in LSF are limited and have limited substrate scopes.

It is necessary to develop new excellent reactions which can be used in LSF.

They contribute not only to chemistry but also to various fields.