Chemical Lysine Modification at a single site

2018/12/20 M1 Murata

Contents

Amino acid target for bioconjugation

• Chemical Lysine modification

- *N*-hydroxysuccinimide (NHS)-ester
- α , β -unsaturated sulfonamide
- Sulfotetrafluorophenyl esters
- Stilbene
- β-lactam
- Sulfonyl acrylate (Lysine activated)

• Summary

Contents

Amino acid target for bioconjugation

• Chemical Lysine modification

- *N*-hydroxysuccinimide (NHS)-ester
- α,β -unsaturated sulfonamide
- Sulfotetrafluorophenyl esters
- Stilbene
- β-lactam
- Sulfonyl acrylate (Lysine activated)

• Summary

Amino acids for bioconjugation

Trp... keto-ABNO

Tyr... reactivity can be efficiently tuned by pH control

Met...only native residue that can be alkylated under acidic conditions

Cys and Lys residues for bioconjugation

The advantage of targeting Cys or Lys residues

- ① abundant (Lys)
- 2 Easy to taeget because of high reactivity

	Ratio in human protein(%)	The position of residue	Comments
Cys	1.9	within the folded proteins	Not accessible
Lys	5.9	On the surface of proteins	accessible

Native lysine residues are more convenient targets for protein modification than cysteine residues,

Targeting naturally occurring side chains in a chemo- and region-selective fashion remains a great and unexplored challenge.

Problems in Lys-bioconjugation

Problem

- <u>Conventional method</u> –
- ✓ Difficulties to target specific single Lys residue
- ✓ Require a large excess of often-valuable reagents. (e.g. 10 eq)
- ✓ Require metals(e.g. Ru, Pd...) or other additives that must later be removed from the reaction mixture.

"A general way to selectively target single Lysine is lacking"

A main literature discussed in this seminar

- <u>Sulfonyl acrylate(Lysine activated)</u>-

Hydrogen bond assisted chemo- and regioselective modification of lysine on native proteins

- ✓ Stoichiometric amount of sulfonyl acrylate reagent
- ✓ Proceed to completion rapidly (1~2h)
- ✓ Under mild conditions (pH=8.0, rt-37°C)
- $\checkmark\,$ Applicable to a range of native protein types
- $\checkmark\,$ The products are stable
- ✓ The method is compatible with Cys bioconjugation method Bernardes et al., J. Am. Chem. Soc. 2018, 140, 4004−4017

Contents

• Amino acid target for bioconjugation

• Chemical Lysine modification

- *N*-hydroxysuccinimide (NHS)-ester
- α,β -unsaturated sulfonamide
- Sulfotetrafluorophenyl esters
- stilbene
- β-lactam
- Sulfonyl acrylate (Lysine activated)

• Summary

- N-hydroxysuccinimide (NHS)-ester
- α , β -unsaturated sulfonamide
- Sulfotetrafluorophenyl esters
- Stilbene
- β-lactam

- N-hydroxysuccinimide (NHS)-ester type -

Biotin-TEO-Ethynyl-NHS (18)

Chen *et al., Bioconjugate Chem.* **2012**, *23*, 500–508

- <u>N-hydroxysuccinimide (NHS)-ester type</u> -

<u>Advantage</u>

- ✓ Fast (2h)
- ✓ Low cost
- \checkmark The risk of misfolding is low

Disadvantage

- ✓ the requirement of substoichiometric amounts of reagent
 - ➡ imcomplete conversion

- α,β -unsaturated sulfonamide type -

Proposed Mechanism of the Conjugation Reaction with HSA

Angew. Chem. Int. Ed. 2014, 53, 11783 –11786 Bioconjugate Chem. 2016, 27, 2271–2275

- α , β -unsaturated sulfonamide type -

Screening of the Takeda chemical library was carried out To develop a new therapeutic agent for sepsis.

Lead compound

Yamada et al., J. Med. Chem. 2005, 48, 7457-7467 Barbas et al., Angew. Chem. Int. Ed. 2014, 53, 11783 –11786 Barbas et al., Bioconjugate Chem. 2016, 27, 2271–2275

Table 1. Inhibitory Activities of N-Arylsufamoyl Derivatives 5a-t, 6a,b,e, 7e, and 8 on NO Production

compd	R	$IC_{50}{}^a\left(nM\right)$	compd	R	$IC_{50}{}^a \left(nM \right)$
5a	2-F, 4-Cl	160 ± 65	5n	2-Cl, 4-F	3.2 ± 0.89
5b	H	260 ± 113	50	2-Cl, 4-Me	41 ± 14
5c	2-F	75 ± 45	5p	2-Cl, 4-CN	1600 ± 172
5d	3-F	150 ± 14	5q	2-Et	130 ± 16
5e	4-F	110 ± 11	5r	$2-CO_2Me$	1100 ± 194
5f	2-Cl	12 ± 1.2	5s	_	> 10000
5g	3-C1	66 ± 19	5t	_	>10000
5h	4-C1	400 ± 279	6a	2-F, 4-Cl	1700 ± 495
5i	$2,3-F_2$	140 ± 49	6b	н	>8200
5j	$2,6-F_2$	160 ± 4.9	6e	4-F	1400 ± 363
5k	$2,4-F_2$	16 ± 1.4	7e	_	4100 ± 1742
51	$2,4,5-F_3$	30 ± 1.8	8	_	230 ± 45
5m	$2,4-Cl_2$	20 ± 2.0			

^a The inhibitory activity is shown as an IC₅₀ value, which is the concentration of test compound required to suppress the production of NO by 50% of control. Values are the mean \pm SD of two or three experiments.

Rhodamine-linked cyclohexene sulfonamide compound (cHx-Rho).

Barbas *et al., Angew. Chem. Int. Ed.* **2014**, *53*, 11783–11786 Barbas *et al., Bioconjugate Chem.* **2016**, *27*, 2271–2275

- α , β -unsaturated sulfonamide type -

Time-course study of trastuzumab, HSAdIC34S-LC, and Fc-HSAdIC34S labeling with 10 equiv of cHx-Rho.

HER2 for trastuzumab and fusion conjugates.

Antibody conjugation using HSAdI as a fusion protein should be amenable to therapeutic applications.

<u>Advantage</u>

- ✓ Site-selectivity
- Antibody conjugates were also stable in human plasma

Disadvantage

- ✓ Imcomplete conversion
- ✓ Need large amount of reagent (10 eq)
- ✓ Basic condition. (pH=9.0)

Barbas *et al., Angew. Chem. Int. Ed.* **2014**, *53*, 11783 –11786 Barbas *et al., Bioconjugate Chem.* **2016**, *27*, 2271–2275 ₁₆

- sulfotetrafluorophenyl esters -

- sulfotetrafluorophenyl esters -

<u>Advantage</u>

 \checkmark more stable in aqueous solution than NHS esters.

Disadvantage

- ✓ the localization of hyper-reactive lysines to pockets could also restrict their access to post-translational machinery, such as ubiquitylation processes
- ✓ In order to prevent overreaction it is necessary to well control the equivalence of reagent and the reaction time.

- Stilbene- designed stilbenes that selectively and covalently modify the prominent plasma protein transthyretin

Transthyretin(TTR) : One of the causative proteins of amyloidosis.

- Amyloidosis caused by transthyretin -

- Senile systemic amyloidosis (SSA)
- Familial amyloid polyneuropathy (FAP)

Figure. Crystal structure of the WT TTR

When transthyretin becomes unstable, it becomes amyloid fiber and aggregates.

A treatment method to stabilize transthyretin is required.

- Stilbene- designed stilbenes that selectively and covalently modify the prominent plasma protein transthyretin

Design of chemoselective covalent TTR kinetic stabilizers

Most chemoselective

- Percent fibril formation of WT TTR(3.6 μ M, black font) and V30M TTR(3.6 μ M, blue font)
- Maximum modification percent is 50%.

✓ Ester or thioester group
 →allow amino group of Lys to approach at Burgi-Dunitz angle

- Stilbene- designed stilbenes that selectively and covalently modify the prominent plasma protein transthyretin

Most chemoselective

- Percent fibril formation of WT TTR(3.6 μ M, black font) and V30M TTR(3.6 μ M, blue font)
- Maximum modification percent is 50%.

- Stilbene- designed stilbenes that selectively and covalently modify the prominent plasma protein transthyretin

Transthyretin(TTR) : One of the causative proteins of amyloidosis.

Green: hydrophobic Purple: polar Blue: exposed

Figure. Crystal structure of the WT TTR

- ✓ Bridging hydrogen bonds are formed between the 4-OH of the benzoyl substructure and the Ser117 and Ser117' hydroxyls from adjacent TTR monomers.
- ✓ One Lys15 ε-amine group and one Lys15' ε-ammonium group at pH 7.

- Stilbene- designed stilbenes that selectively and covalently modify the prominent plasma protein transthyretin

Transthyretin(TTR) : One of the causative proteins of amyloidosis.

- Bridging hydrogen bonds are formed Ser117' hydroxyls from adjacent TTF
- ✓ One Lys15 ε-amine group and one L

<u>Advantage</u>

- ✓ High-selectivity(chemo-, site-)
 - (Even when 5 eq. of stilbene derivative were added, other lysine residues did not react)
- ✓ Small molecule

<u>Disadvantage</u>

✓ Applicable range is limited to TTR

- β-lactam- The first site-specific ADC to be generated using a natural Lys for conjugation.

ADC : useful for cancer treatment.

Conventional Site-Selective reaction

unnatural amino acid by a genetic engineering technique
 introduce a sequence suitable for an enzymatic reaction

h38C2 :(humanized anti-hapten monoclonal antibody)

 Having a nucleophilic Lys residue (pKa=~6) in the hydrophobic pocket

The DVD is composed of

- variable domains of trastuzumab (blue),
- h38C2 (green) with reactive Lys (yellow circle),
- constant domains (gray).

It becomes a selective modified target at in physiological pH.

The first site-specific ADC to be generated using a natural Lys for conjugation. - β-lactam-

Monomethyl auristatin F (MMAF) ... To reduce cytotoxicity

<u>Advantage</u>

- ✓ Mutation free
- \checkmark React irreversibly with Lys.
 - \rightarrow prevent premature drug release
- \checkmark ADCs to be highly homogeneous
- \checkmark conjugation does not eliminate any positive charges on the antibody

 \rightarrow preserve electrostatic properties of the antibody Disadvantage

25

 \checkmark The possibility that other Lys react with reagent Rader, Roush et al., Nat. Com, 2017, .8, 1112 when the reaction time is longer.

Contents

• Amino acid for bioconjugation

• Chemical Lysine modification

- *N*-hydroxysuccinimide(NHS)-ester
- α, β-unsaturated sulfonamide
- Sulfotetrafluorophenyl esters
- β-lactam conjugation
- Sulfonyl acrylate (Lysine activated)

• Summary

Sulfonyl acrylate-mediated lysine modification

- <u>Sulfonyl acrylate(Lysine activated)</u>-

Hydrogen bond assisted chemo- and regioselective modification of lysine on native proteins

- ✓ Stoichiometric amount of sulfonyl acrylate reagent
- ✓ Proceed to completion rapidly (1~2h)
- ✓ Under mild conditions (pH=8.0, rt-37°C)
- ✓ Applicable to a range of native protein types
- ✓ The products are stable.
- ✓ The method is compatible with Cys bioconjugation.

pKa & reactivity of amino acids

- The reactivity of Lys and Cys residue at various pH conditions -

Screening of Michael acceptors

- Computational screening of acrylic acid derivatives-

Activation barriers (ΔG_{\ddagger}) were calculated with PCM(H₂O)/M06-2X/6-31+G(d,p)

Sulfonylmethyl acrylate 1c was predicted to have a superior reactivity compared to its amide analogues 29 Bernardes *et al., J. Am. Chem. Soc.* 2018, *140*, 4004–4017

Detailed analysis of transition states

- <u>Sulfonyl acrylate(Lysine activated)</u>-

Acrylate electrophile derivatives 1a-d used in this study and transition states

This hydrogen bond interaction between the lysine model and the sulfone lowers the energy barrier by 10–16 *kcal mol–*1

Comparison between Cys & Lys

- <u>SulfonyImethyl acrylate(Lysine activated)</u>-

- Hydrogen-bonding
 Cys < Lys
- •Cys ... less polar character of the S-H bond,

 The positive charge developed at the amino group of the lysine model is efficiently dissipated by the sulfone

A means to selectively modify lysine even in the presence of free cysteine residues at near neutral pH.

This conjugation is a two step reaction

- <u>Sulfonylmethyl acrylate(Lysine activated)</u>-

✓ Hydrogen bonding between the nucleophilic amino group and the sulfone moiety promotes both the aza-Michael addition and the elimination of methanesulfinic acid. Bernardes et al., J. Am. Chem. Soc. 2018, 140, 4004–4017

32

rHSA (MS analysis)

- <u>SulfonyImethyl acrylate(Lysine activated)</u>-

A single modification was produced in >95%

rHSA (LC-MS/MS, CD)

- <u>Sulfonylmethyl acrylate(Lysine activated)</u>-

34 Bernardes et al., J. Am. Chem. Soc. 2018, 140, 4004–4017

Reaction with thiol specific Ellman's reagent

- <u>SulfonyImethyl acrylate(Lysine activated)</u>-

Ellman's reagent

✓ Fast✓ Full conversion

Bernardes et al., J. Am. Chem. Soc. 2018, 140, 4004–4017

Substrate scope

- Application to various type of native protein-

Conversion (%) native protein–1c (pH8, 37 °C) = 100

Conjugates are stable \rightarrow Application to ADC is expected(Trastuzumab)

Regioselective lysine modification is applicable to a wide-range of native protein scaffolds.

Bernardes et al., J. Am. Chem. Soc. 2018, 140, 4004–4017

36

Relationships between pKa & reactive site

- <u>Sulfonyl acrylate(Lysine activated)</u>-

Theoretical calculation of the most reactive lysine residue

Lysozyme (6 Lys, no free Cys, 5 disulfides)

Predicted site of modification: K100 Observed site of modification: K100

	р <i>К</i> а	modification
K100	10.1	observed
C95	10.3	Not observed

The selectivity of Lysine residue was observed because of Hydrogen bond.

Bernardes et al., J. Am. Chem. Soc. 2018, 140, 4004-4017

Site-specific labeling

- The ability to precisely conjugate fluorophores and cytotoxic drugs to antibodies -

Conventional antibody labeling

... relied on labeling using disulfide bonds with genetically engineered free lysine residues or non-natural amino acids.

 \rightarrow Produce heterogeneous compounds

There are possibility that affinity with the target antigen may be compromised.

This method can be applied directly to a therapeutic antibody in its native form.

Site-specific labeling

- The ability to precisely conjugate fluorophores and cytotoxic drugs to antibodies -

Bernardes et al., J. Am. Chem. Soc. 2018, 140, 4004–4017

Contents

Amino acid target for bioconjugation

Chemical Lysine modification

- *N*-hydroxysuccinimide (NHS)-ester
- α, β-unsaturated sulfonamide
- Sulfotetrafluorophenyl esters
- β-lactam
- Sulfonyl acrylate (Lysine activated)

• Summary

Summary

- Lysine residues are abundant and easy to taeget because of their high reactivity.
- A general way to selectively target single Lysine is lacking.
- This method can provide a single lysine one step modification with complete chemo- and region-selectivity.
- Direct applicability to wild-type protein sequence bode well for routinely accessing site-selectively modified proteins for basic biology and therapeutic applications.

Appendix

- Ligation
- Genetic Code expansion
- Ligand directed type
- Chemical conjugation using Dha

<u>Genetic code expansion</u>

Current Opinion in Chemical Biology 2018, 45:35-47

• Ligand-directed type

• Ligation

<u>Chemical conjugation using Dha</u>

Examples of reagents used for chemical mutagenesis on histories:

Chemical Biology, 2018, 45:35-47

- Stilbene- designed stilbenes that selectively and covalently modify the prominent plasma protein transthyretin

 ✓ Noncovalent TTR kinetic stabilizers
 ✓ It is known to prevent amyloid formation associated cytotoxicity, whereas structurally related compounds with poor TTR binding capacity do not inhibit cytotoxicity

- <u>Sulfonyl acrylate(Lysine activated)</u>-

Optimisation of reaction conditions between rHSA and 1c with respect to pH, buffer and time

Reaction cond	litions	Convers	°C)	10			
Buffer	рН	Time (h)					(%)
		1/2	1	2	3	4	sion (
Tris HCI 20	6.0	30	30	30	-	-	ver
mM	7.0	30	40	40	-	-	CO
	8.0	80	100	100	100	100	
	9.0	37	42	55	-	-	
NaPi 50 mM	8.0	40	50	65	70	95	

Target protein: Lysozyme

Production run: 40 ns

Protonation state change attempted every **5** simulation steps

рН	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0
LYS13	0.999993	0.999947	0.997636	0.992302	0.945720	0.398367	0.188996	0.012162	0.001551	0.000046
LYS33	0.999820	0.999562	0.997475	0.949310	0.775744	0.208294	0.032031	0.004438	0.000303	0.000018
LYS96	0.999989	0.999846	0.998788	0.990135	0.900597	0.547084	0.099162	0.011172	0.001762	0.000174
LYS97	0.999971	0.999822	0.997938	0.978243	0.900403	0.554339	0.091912	0.011426	0.001499	0.000092
LYS116	0.999996	0.999961	0.998962	0.986439	0.898668	0.542344	0.079672	0.010680	0.000642	0.000143

Protonated fraction $(1 - f_d)$ for each residue as a function of the pH