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Historical timeline of clinical-stage
nanoparticle technologies
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* Polymeric NPs have the capability to

1. release drugs at an experimentally predetermined
rate over a prolonged period of time,

2. release drugs preferentially at target sites with the
possibility of controlled release rates,

3. maintain drug concentrations within therapeutically
appropriate ranges In circulation and within tissues,

4. protect drugs from hepatic Inactivation, enzymatic
degradation and rapid clearance in vivo.



Targeted polymeric NPs
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Targeted NPs in clinical development

Table 1 Targeted NPs in clinical development

Active Pharmaceutical

Identity Ligand Target Nanoparticle Ingredient (API)
BIND-014 Small molecule PSMA® Polymeric Docetaxel
SEL-068 Small molecule Antigen presenting cells Polymeric Nicotine antigen

T-helper cell peptide,
TLR” agonist

CALAA-01 Transferrin Transferrin receptor Polymeric siRNA
MBP-426  Transferrin Transferrin receptor Liposome Oxaliplatin
MCC-465 Antibody fragment Tumour antigen Liposome Doxorubicin

SGT53-01  Antibody fragment Transferrin receptor Liposome p53 gene
“ PSMA: prostate specific membrane antigen. ” TLR: Toll-Like Receptor agonist.

Nazila Kamaly et al. Chem. Soc. Rev., 2012, 41, 2971-3010:



What is the targeted polymeric NPs?

® Therapeutic

® Targeting ligand

Q0 p NSNS PLGA-PEG

poly(lactic-co-glycolic acid) (PLGA), poly(ethylene glycol) (PEG)
Nazila Kamaly et al. Chem. Soc. Rev., 2012, 41, 2971-3010. ,



Biodegradable polymers

“Controlled Drug Release”

h)OLO%m Hl[ O\)OL]‘OH
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PCL
PLGA

poly(lactic acid) (PLA), poly(glycolic acid) (PGA),
poly(lactic-co-glycolic acid) (PLGA), poly(caprolactone) (PCL)

Nazila Kamaly et al. Chem. Soc. Rev., 2012, 41, 2971-3010.



Drug release mechanisms

Polymer matrix S

a. Diffusion from polymer
matrix
b. Surface erosion/degradation
¥ of polymer matrix
c c. Biodegradation of polymer
et \ matrix due to hydrolytic

degradation

after time -t 9
Nazila Kamaly et al. Chem. Soc. Rev., 2012, 41, 2971-3010.



“Stealth” Nanopartile

v' The non-specific binding of plasma proteins onto
the surface of NPs, also known as opsonization,
leads to enhanced blood clearance by the cells
of mononulear phagocytic system (MPS).

\ 4

» By decorating the surfaces of NPs with PEG
polymers, the circulation times can be prolonged.

10
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EPR effect (Passive targeting)

“Enhanced Permeation and Retention” effect
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Pavan P. Adiseshaiah et al. WIREs Nanomed Nanobiotechnol 2009, 2, 99-112.



Limitations of Passive targeting

 Passively targeted NPs end up releasing their
therapeutic payload into the tumor milieu rather
than within cancer cells. (“PEG dilemma”)

 For drugs that are not readily retained in tumors or
macromolecular drugs that are not readily taken up
by cancer cells, this extracellular drug release may
be less effective at maintaining a differentially high
tumor drug concentration over an extended period
of time.



Passive vs active targeting

. e U

'0 Active . o‘ Active ‘.rg
Passive tumor / & vascular %
targeting Btargeting e targeting

@ Non-targeted NPs

Omid C. Farokhzad et al. ACS Nano, 2009, 3 (1), 16-20. 1,



Active targeting

 Targeted NPs facilitate receptor-mediated
endocytosis(RME), releasing therapeutic agents

Inside target cell.

» Higher therapeutic efficacy
» Lower toxicity
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NP Formulation Method

v “Bottom-up” (self-assembly)

» Bulk synthesis

* Nanoprecipitation

 Oil-in-water emulsification-solvent evaporation

o \Water-In-oil-in-water emulsification-solvent
evaporation, etc.

» Microfluidic synthesis
v “Top-down”
»PRINT
(Particle Replication In Non-wetting Templates)



Nanoprecipitation
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Figure 2. Nanoprecipitation or solvent displacement method.

v" Difficulty in complete removal of the organic solvent after self-
assembly.

Pegi Ahlin Grabnar et al. Journal of Microencapsulation 2011, 28(4), 323—-335. 1¢



Single emulsion

AQUEOQOUS PHASE ORGANIC PHASE
(water + stabilizer) (solvent + polymer + drug)
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SOLVENT  This method results in higher drug loading and
EVAPORATION . - - - . .
encapsulation efficiency compared to nanoprecipitation,
l as well as achieving complete solvent removal.
| « Obtained NPs are often larger than those obtained
. through nanoprecipitation.

1
NAOPISEE! Ahlin Grabnar et al. Journal of Microencapsulation 2011, 28(4), 323-335.



Double emulsion
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Guilin Wang et al. Expert Opin. Drug Deliv. 2008, 5(5), 499-515.

This method is generally used for encapsulation of hydrophilic drugs
This method normally yields NPs with larger size than
nanoprecipitaion or O/W methods, with moderate drug loading and
encapsulation efficiency.
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Microflui
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Particle Replication in Non-wetting Templates
PRINT™ Particles

MARY E. NAPIER et al. Polymer Reviews, 2007, 47, 321-327.
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Drug loading methods

Drug
conjugation

Polymer-conjugate
drug/protein

Drug
entrapment

Ligand-bound
nanocarrier

Encapsulation method is the most common technique in this field.
*The drug is entrapped in the polymer matrix during preparation of NPs.

Dan Peer et al. nature nanotechnology, 2007, 2, 751-760.24



Incorporation of targeting ligands on NPs

QD p NS\ e PLGAPEGHigand _Q0O ¢~/ pLGA-PEGFG ® Targeting ligand ® Therapeutic
Nazila Kamaly et al. Chem. Soc. Rev., 2012, 41, 2971-3010.
Coupling chemistry should
»not lead to undesirable products or side reactions
»be produced on large-scales in a reproducible manner*



Post-synthesis NP surface modification methoc
« Amide bond formation

« Maleimide coupling with thiols
« “Bioorthogonal” reactions such as
» Cu-free click reactions

» [4+2] cycloadditon reaction

(b) Copper-free strain-promoted azide-alkyne cycloaddition

. F

F
'®|+ h -

strained alkyne azide

NHR — — +isomer NHR
W. Russ Algar et al. Bioconjugate Chem. 2011, 22, 825-858.

Mariagrazia Di Marco et al. International Journal of Nanomedicine, 2010, 5, 37-49.
John C. Jewett et al. Chem. Soc. Rev., 2010, 39, 1272-1279. 26



Targeted NPs through polymer self-assembly

 Itis difficult to control the stoichiometry of functional biomolecules
on the surface of NPs via coupling chemistries.

 Self-assembly of pre-functionalized triblock copolymers allows
for the reoroducible creation of ontimal taraeted NPs.

A 4 0 o 0 0
by o et <

CH, 0 CHy, O
PLGA-Acid 0 _COOH PLGA-PEG-Acid H,N 4 PLGA-PEG-Aptamer
H2N/{/ \/\}O

A-10 Aptamer-Amine
Amine-PEG-Acid

C Mixing ratios 59

e55
[

40 i Y, Frank Gu et al. PNAS, 2008, 105, 2586-2591.
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Precisely controlled aptamer density
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Solubility of ligands
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Targeting ligands

» Antibodies and their fragments

» Proteins

» Peptides

» Aptamers (Nucleic acid lidands)

» Small molecules (folic acid, carbohydrate etc.)



Antibodies and their fragments

Antibody

Conventional Camel Heavy-Chain VHH or
antibody antibody Nanobody
W
ScFv Fab (@

® S 'i Dan Peer et al. nature nanotechnology, 2007, 2, 751-760.

MW/kDa

Whole antibodies 150 15-20
Fab’ 50 5-10
ScFv 25 3-5

Nanobody 15 2-3 33



Proteins

* Endogenous proteins that selectively bind to specific
membrane-bound receptors on cells can be used.

» Transferrin, Epidermal Growth Factor,
Nerve Growth Factor, etc.

O The receptors of Tf and EGF are overexpressed on
cancer cells.

Transferrin
Fe Fe

| |
Fe Fe

TFR1A\ OTFRZ
v Demerits

Commonly immunogenic, off-target adverse effects
Ulrich E. Schaible et al. NATURE REVIEWS, 2004, 2, 946-953.




Peptides
« Small size, relatively low immunogenicity, high
stability, and ease of conjugation to NP surfaces

» RGD (Arg-Gly-Asp) sequence binds to avPs
Integrin receptors which are highly upregurated on
both tumor cells and angiogenic endothelial cells.

» Cell-penetrating peptides such as Tat peptide

[ Tat peptide derives from the HIV-1 virus.

» Peptides with RIKXXR/K motif such as IRGD
OIRGD homes to tumors and penetrates into them.
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Kazuki N. Sugahara et al. Cancer Cell, 2009, 16, 510-520.
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Aptamers

<P

 Single-strand of DNA or RNA oligonucleotides
« Small size, reproducible synthesis, low immunity

Whole antibodies 150 15-20
Nanobody 15 2-3
Aptamers DNA/RNA 10-30 2-3

v" The high specificity of Apts against targets is their
secondary structure, but the secondary structure
may be affected by heat, exonuclease or
endonuclease degradation. s



“cell-uptake selection”
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Small molecules

» The availability of a range of facile coupling
chemistries for their conjugation

* The availability of a wide range of targeting ligands
with variable solubilities and functional groups

» Folic acid (or folate)

OFolate receptors (FRs) are frequently over-expressed
In a range of cancer

v FRs are expressed not only in tumor tissue but in
normal epithelia.



Contents

Il. Topics

4. Optimal biophysicochemical characteristics



Influence of particle size

* The generally accepted diameter of nanomedicine
for cancer Is In the range of 10-100 nm.

v The lower limit is determined by an interaction
with renal filtration in the kidney.

v The upper limit is determined by an interaction

with RES (Immune system) in the spleen and liver.
(particles larger than 200 nm must compensate by deformability)

v'For the purpose of tumor accumulation, the upper
limit for extravasation into solid tumors have been
suggested at ~400 nm.

42



* Influence of NP shape
v'Spheres vs Rods on cellular uptake?
» Further investigations are required.

* Influence of NP surface charge

v'NP surface charge is a major factor contributing
to the non-specific binding of NPs to cells.

v'Charged NPs will inevitably have short half-lives
and high non-specific cellular uptakes due to
Interaction with blood proteins and complement
activation.

» Neutral particles would be good.



Influence of NP PEGylation

“mushroom”

Optimal PEG coverage?

“brush”

Donald E. Owens Il et al. International Journal of Pharmaceutics, 2006, 307, 93—-102
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“A new class of therapeutics”
 Delivering therapeutics in a more controlled and
specific manner
» Improved drug safety and efficacy

 Protecting drugs from rapid metabolism and
Inactivation; improving drug solubility, PK, BD,
and target tissue exposure

» Additional degrees of freedom to medical chemistry



Co-delivering of multiple drugs

PLA-Pt(1V)

PLGA-PEG-COOH

Nanoprecipitation

EDC/NHS
>
O Pt(IV)-monosuccinate () Docetaxel (Dtxl) A A10-Aptamer
(Hydrophilic Drug) (Hydrophobic Drug) (Targeting Ligand)

N. Kolishetti et al. Proc. Natl. Acad. Sci. U. S. A., 2010, 107, 17939-17944. 47



Challenges

v Insufficient understanding of events at the nano-bio
Interface In vitro and in vivo

v'Inadequate knowledge of the fate of NPs at the body,
organ, and cellular levels

v Difficulty in achieving reproducible and controlled
synthesis of NPs at scales suitable for clinical
development and commercialization

v"Overreliance on the EPR effect (This phenomenon
may not be a universal property of all tumors.)

v’ There are too many “on a case-by-case basis”.
> Is It possible for a reasonable strategy to exist?
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