C-H activation via Multiple-site Concerted Proton-Electron Transfer

Literature Seminar #1
2023/8/24
M1 Arii

1. Introduction

- 1-1. PCET and CPET Marcus Cross Relation
- 1-2. Example of Canonical HAT, Separated CPET, Multi-Site CPET
- 1-3. Importance of Hydrogen Bond in MS-CPET

2. Contents

- 2-1. Intramolecular C-H activation via MS-CPET
- 2-2. Intramolecular C-H activation with photocatalyst via MS-CPET
- 2-3. Intermolecular C-H activation via MS-CPET

3. Summary

1. Introduction

- 1-1. PCET and CPET Marcus Cross Relation
- 1-2. Example of Canonical HAT, Separated CPET, Multi-Site CPET
- 1-3. Importance of Hydrogen Bond in MS-CPET

2. Contents

- 2-1. Intramolecular C-H activation via MS-CPET
- 2-2. Intramolecular C-H activation with photocatalyst via MS-CPET
- 2-3. Intermolecular C-H activation via MS-CPET

3. Summary

- PCET: Proton-Coupled Electron Transfer
 - Reaction which proton transfer (PT) and electron transfer (ET)
- CPET: Concerted Proton Electron Transfer
 - Reaction in which one proton and one electron transfer concertedly
- CPET with different mechanisms exist.
- However, their classification is ambiguous and continuous.

All the reactions listed above are CPET.

Illustration of CPET

Introduction

Although there is no clear classification, CPET can be divided into three main categories.

(1) Canonical HAT

 $H^{\bullet} \equiv H^{\oplus} + e^{-}$

- ▶ Proton and electron transfer as hydrogen atom.
 - ⇒ Protons and electrons transfer into the same bond.

2 Separated CPET

► Proton and electron transfer to another atom in the same molecule.

3 Multiple Site CPET

▶ Proton and electron transfer to completely separate molecules.

Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M., Acc. Chem. Res. 2018, 51, 2391–2399

Marcus crossover equation can be used to understand the reaction rate of CPET. When the reaction proceeds in CPET, $|\Delta G^{\circ}| \ll \lambda$ is established.

- $\log(k) = \alpha \log(K_{\rm eq}) + \beta$ Brønsted catalysis law
- $\Delta G^{\ddagger} = \alpha \Delta G^{\circ} + \beta'$ Eyring equation

Equation for the intersection of parabolas

Basically, the reactions that proceed in CPET have an α of 0.5

Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M., Acc. Chem. Res. 2018, 51, 2391–2399

1. Introduction

- 1-1. PCET and CPET Marcus Cross Relation
- 1-2. Example of Canonical HAT, Separated CPET, Multi-Site CPET
- 1-3. Importance of Hydrogen Bond in MS-CPET

2. Contents

- 2-1. Intramolecular C-H activation via MS-CPET
- 2-2. Intramolecular C-H activation with photocatalyst via MS-CPET
- 2-3. Intermolecular C-H activation via MS-CPET

3. Summary

Example of Canonical HAT

Introduction

radical-chain chlorination

Alkane oxidation by *t*-BuO radical

$$R-H \Longrightarrow O \longleftarrow R^{\bullet} + HO \longleftarrow$$

Darcy, J. W.; Koronkiewicz, B.; Parada, G. A.; Mayer, J. M., Acc. Chem. Res. 2018, 51, 2391–2399

Hydrogen atom abstraction by a Ruthenium-oxo complex

Evidence of progress in CPET mechanism

Bryant, J. R.; Mayer, J. M., J. Am. Chem. Soc. 2003, 125, 10351-10361

- Electron may have transferred to ruthenium as ruthenium is ultimately reduced.
- However, since the electrons are in Ru-O π^* orbital, the transferred electrons may also form O-H bond.

Example of Separated CPET

Introduction

Alkane oxidation by compound I in Cytochrome P450s

the mixture of porphyrin radical cation and thivl radical

Yosca, T. H., et al., Science, 2013, 342, 825.

- The proton adds to the oxo forming a hydroxo ligand.
- The electron transfers a "hole" (= porphyrin radical cation or thiyl radical) away from the oxo.

Example of Separated CPET

CPET with the long distance between redox and baisic site

Introduction

Wu, A.; Masland, J.; Swartz, R. D.; Kaminsky, W.; Mayer, J. M., Inorg. Chem. 2007, 46, 11190-11201

Manner, V. W.; Mayer, J. M., J. Am. Chem. Soc. 2009, 131, 9874-9875

Warren, J. J.; Menzeleev, A. R.; Kretchmer, J. S.; Miller, T. F.; Gray, H. B.; Mayer, J. M., J. Phys. Chem. Lett. 2013, 4, 519-523

Concerted proton electron transfer proceeds although the reduction and base fields are too far apart to interact with each other.

Introduction

One-Electron Oxidation of a Phenol Coupled with an Intramolecular Amine-Driven Proton Transfer

Mayer, J. M.; Rhile, I. J., J. Am. Chem. Soc. 2004, 126, 12718-12719.

Evidence of progress in CPET mechanism

① A primary kinetic isotope effect $k_H/k_D = 2.4 \pm 0.2$

HOAr-NH₂, X^+ CPET OAr-NH₃, X^+ ET2

Protons are involved in the rate-limiting step.

- ② The reaction rate is too fast to go through a high-energy intermediate. (→ Appendix)
- (3) $\alpha = \Delta \Delta G^{\ddagger}/\Delta \Delta G^{\circ} = 0.53$

Example of *Multi-Site CPET*

Three-Component MS-CPET Reactions

Morris, W. D.; Mayer, J. M., J. Am. Chem. Soc. 2017, 139, 10312-10319.

Evidence of progress in CPET mechanism

- ① ΔG°_{ET1} and ΔG°_{PT2} are each larger than ΔG^{\ddagger} .

 The reaction is not via ET1, PT2. (\rightarrow Appendix)
- ② $\alpha = \Delta \Delta G^{\ddagger}/\Delta \Delta G^{\circ} = \ln(k_2) / \ln(K_{eq}) = 0.46$ Changing the E of the oxidant or the pKa of the base will result in an α of 0.5. (\rightarrow Appendix)

Introduction

1. Introduction

- 1-1. PCET and CPET Marcus Cross Relation
- 1-2. Example of Canonical HAT, Separated CPET, Multi-Site CPET
- 1-3. Importance of Hydrogen Bond in MS-CPET

2. Contents

- 2-1. Intramolecular C-H activation via MS-CPET
- 2-2. Intramolecular C-H activation with photocatalyst via MS-CPET
- 2-3. Intermolecular C-H activation via MS-CPET

3. Summary

Importance of Hydrogen Bond in MS-CPET

Introduction

MS-CPET requires fixing the reaction coordinates of a proton in advance.

Tyrosine oxidation in Photosystem II

J. L. Dempsey, J. R. Winkler, H. B. Gray, Chem. Rev. 2010, 110, 7024–7039.

Enzymes also use hydrogen bond to proceed MS-CPET.

C-H bond cannot form hydrogen bonds.

C-H activation using MS-CPET is difficult.

However, what if we could fix the C-H bond on the PT reaction coordinates in advance?

13

1. Introduction

- 1-1. PCET and CPET Marcus Cross Relation
- 1-2. Example of Canonical HAT, Separated CPET, Multi-Site CPET
- 1-3. Importance of Hydrogen Bond in MS-CPET

2. Contents

- 2-1. Intramolecular C-H activation via MS-CPET
- 2-2. Intramolecular C-H activation with photocatalyst via MS-CPET
- 2-3. Intermolecular C-H activation via MS-CPET

3. Summary

Design of Molecules by DFT Calculations

Intramolecular C-H activation via MS-CPET

Conditions for molecules designed by DFT calculations

A base positioned near a relatively weak C-H bond

Steric interactions between the rigid fluorene and the benzoate

Keeping the rings nearly perpendicular

Positioning the base near the weak benzylic C-H bond

Lactone Formation in C-H activation via MS-CPET

Intramolecular C-H activation via MS-CPET

Comparison with Regioisomers

Intramolecular C-H activation via MS-CPET

The presence and positioning of the base are crucial for MS-CPET.

Mechanism Analysis

Intramolecular C-H activation via MS-CPET

Stepwise reaction = (ET + PT) vs One-step reaction = MS-CPET

entry	Oxidant* ¹	E _{ox} (V) *2	<i>k</i> _{MS-CPET} (M ⁻¹ s ⁻¹)	KIE (k _H /k _D)	
1	N(Ar _{Br}) ₃ •+	0.67	7.2×10 ⁵	~4.5	
2	N(Ar _{OMe})(Ar _{Br}) ₂ *+	0.48	5.4×10 ⁴	_	
3	N(Ar _{OMe}) ₂ (Ar _{Br})*+	0.32	1.9×10 ⁴	2.4	
4	N(Ar _{OMe}) ₃ *+	0.16	9.5×10 ³	3.7	
5	FeCp ₂ ⁺	0.00	1.9×10 ³	-	
6	FeCp*Cp ⁺	-0.27	3.8×10 ²	1.6	
7	FeCp*2 ⁺	-0.48	2.3×10 ¹	-	
8	CoCp ₂ ⁺	-1.33	NR	n/a	

Evidence of progress in MS-CPET

Reaction proceeds at an oxidant with △G°_{MS-CPET} near
 and no further decrease in oxidizing power will prevent the reaction from progressing.

Proceeding via MS-CPET

2 $k_{MS-CPET}$ is dependent on the strength of oxidant = E_{ox}

H/D substitution

ET and PT occurring in the rate-limiting step.

3

Mechanism Analysis

Intramolecular C-H activation via MS-CPET

Stepwise reaction = (ET + PT) vs One-step reaction = MS-CPET

③ The value of $\alpha = \Delta \Delta G^{\ddagger}/\Delta \Delta G^{\circ} = \Delta \ln(k_2) / \Delta \ln(K_{eq})$

HAT reaction

the difference in BDEs

MS-CPET

Combination of acid-base and oxidation reactions

$$H^{\bullet} \xrightarrow{C_G} H^{\dagger} + e^{-}$$

$$\Delta G^{\circ}_{MS-CPET} = BDE_{C-H} - 1.37pK_a - 23.06E_{ox} - C_{G}$$

$$\Delta \log(K_{\rm eq}) = -\Delta G^{\circ}_{\rm MS-CPET}/2.303RT$$

$$\Delta \log(k_{\text{MS-CPET}}) = \alpha \Delta \log(K_{\text{eq}})$$

Markle, T. F.; Darcy, J. W.; Mayer, J. M., Sci. Adv. 2018, 4, eaat5776

Julia W. Darcy, Scott S. Kolmar, and James M. Mayer, J. Am. Chem. Soc. 2019, 141, 10777-10787

Mechanism Analysis

③ The value of $\alpha = \Delta \Delta G^{\ddagger}/\Delta \Delta G^{\circ} = \ln(k_2) / \ln(K_{eq})$

Intramolecular C-H activation via MS-CPET

$\bigoplus_{0} Ox^{+} Ox$	HO O
0.2~0.4 % MeOH MeCN	R

entry	R	pKa(CO ₂ H) expt	ΔpKa(CO ₂ H) expt	ΔBDE _{C-H} (CO ₂ -) (kcal mol ⁻¹)
1	NH ₂	22.0	+0.8	-0.06
2	OMe	21.5	+0.3	0.22
3	Н	21.2	0	0
4	CF ₃	20.3	-0.9	0.83

 α_{ET} : Fixed substituents, changing reduction potential

Brønsted α : Fixed reduction potential, changing substituents

Oxidant	Brønsted α
$N(Ar_{Br})_3^{\bullet+}$	0.64
$N(Ar_{OMe})(Ar_{Br})_2^{+}$	0.54
$N(Ar_{OMe})_2(Ar_{Br})^{\bullet+}$	0.36 ± 0.07
N(Ar _{OMe}) ₃ •+	0.48 ± 0.05
FeCp ₂ ⁺	0.58 ± 0.10
FeCp*Cp ⁺	0.61 ± 0.09
FeCp*2 ⁺	0.99 ± 0.12

- $\alpha_{ET} = 0.19 \sim 0.22$ Not sensitive to changes in E_{ox}
- Brønsted α = about 0.50
 Sensitive to changes in substituents

Changing substituents
$$\begin{cases} pK_a & \Leftarrow \text{ large effect} \\ BDE & \Leftarrow \text{ small effect} \end{cases} (\to Appendix)$$

Julia W. Darcy, Scott S. Kolmar, and James M. Mayer, *J. Am. Chem. Soc.* **2019**, *141*, 10777–10787

DFT Calculated Potential Energy Surfaces

Intramolecular C-H activation via MS-CPET

Comparison of changes in IRC between PT and MS-CPET

IRC = Internal Response Coordinates

HO

Ox

$$Ox$$
 Ox
 Ox

PT coordinate: the distance between the fluorenyl proton and carboxylate oxygen the extent of ET (only MS-CPET): the change on the nitrogen atom of the oxidant

Julia W. Darcy, Scott S. Kolmar, and James M. Mayer, J. Am. Chem. Soc. 2019, 141, 10777-10787

DFT Calculated Potential Energy Surfaces

Intramolecular C-H activation via MS-CPET

Internal Reaction Coordinate

- "PT in MS-PCET" is slower than PT in TS.
- PT precedes ET in MS-PCET.

Internal Reaction Coordinate

In MS-CPET, ET occurs at once in TS.

The electron transfer "switch" is triggered by the transfer of a proton to a transition state.

- 1. Introduction
 - 1-1. PCET and CPET Marcus Cross Relation
 - 1-2. Example of Canonical HAT, Separated CPET, Multi-Site CPET
 - 1-3. Importance of Hydrogen Bond in MS-CPET

2. Contents

- 2-1. Intramolecular C-H activation via MS-CPET
- 2-2. Intramolecular C-H activation with photocatalyst via MS-CPET
- 2-3. Intermolecular C-H activation via MS-CPET
- 3. Summary

C-H activation with Photocatalysis via MS-CPET

Intramolecular C-H activation with photocatalyst via MS-CPET

Two possible iridium catalytic pathways

Net oxidation conditions

Net neutral conditions

- *[Ir^{III}] reacts rapidly with Co(acac)₃.
- Reaction cannot proceed without Co(acac)₃.

Lactone-forming reactions occur in the red pathway(= Net oxidation conditions).

Maraia E. Ener, Julia W. Darcy, Fabian S. Menges, and James M. Mayer, J. Org. Chem. 2020, 85, 7175-7180

Markers of Iridium-Catalyzed C-H Activation

Intramolecular C-H activation with photocatalyst via MS-CPET

However, the blue path (Net neutral conditions) also occurs in the system.

Deuterium incorporation can be used as a marker for transient C-H activation by *[Ir II].

Substrate Scope of Iridium-Catalyzed C-H Activation

Intramolecular C-H activation with photocatalyst via MS-CPET

+ox: Lactone is also formed when catalyst and oxidant are added

Photoredox C-H activation occurs for a variety of benzylic substrates with internal carboxylates.

26

"ET + HAT" vs MS-CPET

Intramolecular C-H activation with photocatalyst via MS-CPET

redox couple	$E_{1/2}$ (V)	references
$E_{1/2} \left(\mathbf{Ir_H^{IV}}/\mathbf{Ir_H^{III}} \right)$	~1.38	estimated here ^a
$E_{1/2} \left(\mathbf{Ir_{tBu}}^{IV} / \mathbf{Ir_{tBu}}^{III} \right)$	~1.35	estimated here ^a
$E_{1/2} \left(* \mathbf{Ir_H}^{\mathbf{III}} / \mathbf{Ir_H}^{\mathbf{II}} \right)$	~1.05	estimated here ^b
$E_{1/2} \left(* \mathbf{Ir_{tBu}}^{II} / \mathbf{Ir_{tBu}}^{II} \right)$	~0.95	estimated here ^b
$E_{1/2} \left(\text{RCO}_2^{\bullet} / \text{RCO}_2^{-} \right)$	~0.9	3a, 4a, 19

[lr_R] can oxidize carboxylates **directly**.

Some molecules may proceed with "ET+HAT" instead of MS-CPET

MS-CPET

→ the C-H bond is weak the proton acceptor is basic and difficult to oxidize.

"ET+HAT"

→ the C-H bond is stronger the proton acceptor is easy to oxidize.

Maraia E. Ener, Julia W. Darcy, Fabian S. Menges, and James M. Mayer, J. Org. Chem. 2020, 85, 7175-7180

1. Introduction

- 1-1. PCET and CPET Marcus Cross Relation
- 1-2. Example of Canonical HAT, Separated CPET, Multi-Site CPET
- 1-3. Importance of Hydrogen Bond in MS-CPET

2. Contents

- 2-1. Intramolecular C-H activation via MS-CPET
- 2-2. Intramolecular C-H activation with photocatalyst via MS-CPET
- 2-3. Intermolecular C-H activation via MS-CPET

3. Summary

Intermolecular Aliphatic C-H Activation via MS-CPET

Intermolecular C-H activation via MS-CPET

transition state

Carla M. Morton, et al., J. Am. Chem. Soc. 2019, 141, 13253-13260

Intermolecular aliphatic C-H activation via MS-CPET was achieved.

Development of Conditions for C-H Alkylation

entry x mol% y eq. yileld (%) 1 5 1.0 75 2 5 0 66

2

Intermolecular C-H activation via MS-CPET

0

92

The mechanism that the authors were designing

The authors' initial approach was to generate heteroatom-centered radicals via MS-CPET, followed by HAT of hydrocarbons.

However, alkylation proceeded without sulfonamide, as represented in entry 3.

16

40 %

17

92 %

57 %

Substrate Scope / Alkene Scope

20

67 %

19

65 %

Carla M. Morton, et al., J. Am. Chem. Soc. 2019, 141, 13253-13260

Mechanism Analysis (Formation of Complex)

Intermolecular C-H activation via MS-CPET

1 : The association of the phosphate base and iridium photocatalyst

Titration of the base into a solution containing the Ir[™] catalyst

Downfield shifts in the 1H NMR spectrum of all protons of the bipyridine ligand

Especially, 3,3'-protons

The crystal structure of the Ir^Ⅲ catalyst and diphenyl phosphate base

entry	Ir photocat.	E _{ox} (V vs. Fc+/Fc)	K _{eq} (M ⁻¹)	yield (%)
1	5,5'-d(CF ₃)bpy	1.30	$(7.8 \pm 0.6) \times 10^3$	73
2	bpy	0.94	$(1.0 \pm 0.1) \times 10^3$	37
3	4,4'-dtbbpy	0.83	$(3.4 \pm 0.2) \times 10^2$	45
4	3,3'-F-5,5'-d(CF ₃)bp	oy 1.59	-	-
5	3,3'-d(CO ₂ CH ₃)bp	y 1.28	-	-

Loss of 3,3'-proton prevents binding to phosphate base

Carla M. Morton, et al., J. Am. Chem. Soc. 2019, 141, 13253-13260

Mechanism Analysis (Formation of Complex)

Intermolecular C-H activation via MS-CPET

1: The association of the phosphate base and iridium photocatalyst

F CF₃
CF₃
CF₃
H F

Experimentally, it was found that the K_{eq} is comparable to that of phosphate bases. $K_{eq} = (6.9 \pm 0.4) \times 10^3 \,\text{M}^{-1}$

Competitive experiments confirm the need for complex.

0 mol% TBAF

2.5 mol% TBAF

5 mol% TBAF

8 mol% TBAF

Entry	Time (min)	[Product] (M)									
1	0	0	1	0	0	1	0	0	1	0	0
2	30	0.00622	2	30	0.00187	2	30	0	2	30	0
3	105	0.0412	3	105	0.0175	3	105	0.00966	3	105	0.00585
4	180	0.0852	4	180	0.0377	4	180	0.0218	4	180	0.0177
5	240	0.112	5	240	0.0555	5	240	0.0259	5	240	0.0202
6	300	0.130	6	300	0.0684	6	300	0.0296	6	300	0.0230

Reaction efficiency was maintained when TBAF was added to the N-H PCET reaction.

☞ Complex is required for C-H activation.

Mechanism Analysis (Formation of Complex)

2 : ET also requires substrate

Intermolecular C-H activation via MS-CPET

A signal for monoreduced Ir I could be observed by transient absorption spectroscopy.

The formation of Ir^{II} can determine if electron transfer has occurred.

- Electron transfer is occurring only when both substrate and phosphate base are present.
- Electron transfer is proportional to substrate concentration.

MS-CPET proceeds only when all three elements are present.

1. Introduction

- 1-1. PCET and CPET Marcus Cross Relation
- 1-2. Example of Canonical HAT, Separated CPET, Multi-Site CPET
- 1-3. Importance of Hydrogen Bond in MS-CPET

2. Contents

- 2-1. Intramolecular C-H activation via MS-CPET
- 2-2. Intramolecular C-H activation with photocatalyst via MS-CPET
- 2-3. Intermolecular C-H activation via MS-CPET

3. Summary

Summary

- By designing the molecule, intramolecular C-H activation proceeded via MS-CPET, which normally requires hydrogen bond.
- By using mechanism analysis experiments and computational chemistry, it was also confirmed that ET and PT proceed concertedly.

• The introduction of the photocatalyst facilitated the study of C-H activation via MS-CPET and expanded the substrate.

Summary

• A system for C-H activation via intermolecular MS-CPET has been discovered and can be applied to many aliphatic C-H bond.

transition state

Example of *Multi-Site CPET*

Appendix

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Mayer, J. M.; Rhile, I. J., J. Am. Chem. Soc. 2004, 126, 12718-12719.

Evidence of progress in CPET mechanism ②: high-energy intermediates

Example of *Multi-Site CPET*

Three-Component MS-CPET Reactions

$$\Delta G^{\circ}_{ET1}$$
 = +16 kcal mol⁻¹
 ΔG°_{PT1} = +31 kcal mol⁻¹

 $\Delta G^{\dagger} = 10 \text{ kcal mol}^{-1}$

 (ΔG^{\ddagger}) is given from the measured k_2 and the Eyring equation.)

The reaction is not via ET1, PT2.

$$\begin{array}{c} OH \\ \hline \\ N \\ \hline \\ N \\ \hline \\ R_n \end{array} + \begin{array}{c} O \\ \hline \\ F_e \\ \hline \\ R_n \end{array} + \begin{array}{c} O \\ \hline \\ F_e \\ \hline \\ R_n \end{array} + \begin{array}{c} O \\ \hline \\ F_e \\ \hline \\ R_n \end{array} + \begin{array}{c} O \\ \hline \\ F_e \\ \hline \\ R_n \end{array} + \begin{array}{c} O \\ \hline \\ F_e \\ \hline \\ R_n \end{array} + \begin{array}{c} O \\ \hline \\ F_e \\ \hline \\ R_n \end{array} + \begin{array}{c} O \\ \hline \\ F_e \\ \hline \\ N \\ \end{array} + \begin{array}{c} O \\ \hline \\ R_n \\ \hline \\ N \\ \end{array} + \begin{array}{c} O \\ \hline \\ R_n \\ \hline \\ N \\ \end{array} + \begin{array}{c} O \\ \hline \\ R_n \\ \hline \\ N \\ \end{array} + \begin{array}{c} O \\$$

OH
N
N
$$AG^{\circ}_{PT2} = +31 \text{ kcal mol}^{-1}$$
 $AG^{\circ}_{PT2} = +31 \text{ kcal mol}^{-1}$
 $AG^{\circ}_{ET1} = +16 \text{ kcal mol}^{-1}$
 $AG^{\circ}_{ET2} = -45 \text{ kcal mol}^{-1}$

Morris, W. D.; Mayer, J. M., J. Am. Chem. Soc. 2017, 139, 10312-10319.

Example of *Multi-Site CPET*

Three-Component MS-CPET Reactions

$$\alpha = \Delta \Delta G^{\ddagger}/\Delta \Delta G^{\circ}$$
$$= \ln(k_2) / \ln(K_{eq}) = 0.46$$

entry	oxidant	base	
1	[Cp ₂ Fe]BF ₄	ру	
2	[Cp ₂ Fe]BF ₄	4-Me-py	
3	[Cp ₂ Fe]BF ₄	4-MeO-py	
4	[Cp ₂ Fe]BF ₄	4-Me-py 2,6-lutidine	
5	[Cp ₂ Fe]BF ₄		
6	[Cp ₂ Fe]BF ₄	4-Me ₂ N-py	
7	[(MeCp) ₂ Fe]PF ₆	ру	
8	[Cp(Cp*)Fe]PF ₆	ру	
9	[Cp(Cp*)Fe]PF ₆	4-Me-py 4-MeO-py	
10	[Cp(Cp*)Fe]PF ₆		
11	[Cp(Cp*)Fe]PF ₆	4-Me ₂ N-py	

Morris, W. D.; Mayer, J. M., J. Am. Chem. Soc. 2017, 139, 10312-10319.

Lactone Formation in C-H activation via MS-CPET

Markle, T. F.; Darcy, J. W.; Mayer, J. M., Sci. Adv. 2018, 4, eaat5776

③ The value of $\alpha = \Delta \Delta G^{\ddagger}/\Delta \Delta G^{\circ} = \ln(k_2) / \ln(K_{eq})$

entry	R	pKa(CO ₂ H) expt	ΔpKa(CO₂H) expt	ΔBDE _{C-H} (CO ₂ -) (kcal mol ⁻¹)
1	NH ₂	22.0	+0.8	-0.06
2	OMe	21.5	+0.3	0.22
3	Н	21.2	0	0
4	CF ₃	20.3	-0.9	0.83

1

Compare entry1 and 4

 $\Delta pK_a = 1.7 \rightarrow \Delta G^{\circ} = 2.3 \text{ kcal mol}^{-1}$

- $_{\text{2}}$ Δ BDE_{C-H} = 0.9 kcal mol⁻¹

 - The R = OMe compound reacts 3 times faster than the R = H compound.
 - The R = OMe have a slightly stronger C-H bond.
 - The difference of BDE isn't the major contributor.

Julia W. Darcy, Scott S. Kolmar, and James M. Mayer, *J. Am. Chem. Soc.* **2019**, *141*, 10777–10787 James M. Mayer, *et al.*, *J. Org. Chem.* **2022**, *87*, 2997–3006

DFT Calculated Potential Energy Surfaces

C-H activation with phyocatalysis via MS-CPET

Figure S2. **Red**: Substrate **1** (deprotonated *in situ*). The singlet at 6.67 ppm corresponds to the fluorenyl proton. **Green**: Crude reaction mixture after overnight irradiation. Initial reaction mixture: 6 mM **1** with 0.8 eq TBAOAc, 7 mM Co(acac)₃, 75 μ M [Ir_H], in d^3 -MeCN. **Blue**: **1-lac** generated by photoredox oxidation. The crude reaction mixture was filtered through a silica plug.

Maraia E. Ener, Julia W. Darcy, Fabian S. Menges, and James M. Mayer, J. Org. Chem. 2020, 85, 7175-7180

The fact that the photocatalytic system is also on the thermal MS-CPET correlation line suggests that iridium-catalyzed C-H activation also proceeds by MS-CPET.

Substrate Scope / Alkene Scope

Appendix

Complex Substrates

The oxygen-centered radicals produced by phosphate oxidation showed low regioselectivity. Therefore, it is thought that a different mechanism is at work.

Reaction Mechanism

