Biomolecular recognition using aptamers

Literature seminar #1

2024.12.19

M1 Ryo Okuma

Contents

- Introduction
 - Aptamer Characteristics
 - Advantages and disadvantages of aptamers
 - Current applications of aptamers
- Development of new applications of aptamers
 - Ligand-directed catalysis
 - TDP-43 imaging in cell
- Perspective
- Summary

Contents

- Introduction
 - Aptamer Characteristics
 - Advantages and disadvantages of aptamers
 - Current applications of aptamers
- Development of new applications of aptamers
 - Ligand-directed catalysis
 - TDP-43 imaging in cell
- Perspective

Summary

Yang, S.; et al. Mol. Ther. Nucleic. Acids. 2018, 13, 164–175. 3

Aptamers are a type of oligonucleotide therapies

<u>Aptamer</u>

- single stranded DNA/RNA
- three-dimensional structure
- high specificity due to intermolecular forces

		Classifications of maj	jor oligonucleotide the	erapies	
	Antisense oligonucleotides	siRNA	miRNA (mimic)	Aptamer	CpG oligonucleotides
Typical structure	Single-stranded DNA/RNA	Double-stranded RNA	Double-stranded RNA	Single-stranded DNA/RNA	Single-stranded DNA
Mechanism of action	mRNA miRNA mRNA Inhibition of degradation, miRNA Suppression of transcription, etc.	RISC MRNA MRNA degradation	RISC MRNA MRNA MRNA Suppression of degradation transcription	Protein Inhibition of protein function	Endosome TLR9 Stimulation of immune system
Characteristics	A variety of mechanisms exist e.g. mRNA degradation, splicing regulation, inhibiting miRNA.	Specific effect to mRNA with complementary sequences.	Single miRNA can regulate several mRNA transcripts.	High specificity due to three- dimensional structure-dependent effect.	Applying innate immune system to oligonucleotides via TLR9 which is considered as a side effect.
DDS/ miscellaneous	Chemically modified oligonucleotides are often used and DDS is not usually required.	Chemically modified oligonucleotides have recently been developed but DDS is generally required.	Generally DDS is required.	PEG modification is often used in order to extend blood circulation time.	Mixed with antigen as an adjuvant.

SELEX : Systematic Evolution of Ligands by EXponential enrichment

Schematic depiction of SELEX

- In general, aptamers are selected and obtained based on their binding affinity to target molecules using a method called SELEX.
- ✓ high affinity for the target $(K_d = nM \sim pM)$
- ✓ High binding specificity

Aptamers have many advantages over antibodies.

	aptamer	antibodies
Molecular weight	Middle (~12-30 kDa)	Relatively big (~150-180 kDa)
Preparation method	Chemical method	Biological method
Generation time	Few hours to months	Several months(~ 6 months)
Cost	Lower	Higher
Allowed chemical modification	Various modifications	Limited modifications
Stability	Very stable	Sensitive to temperature and pH changes
Immunogenicity	Low	High

Disadvantages of aptamers and solutions

Disadvantages

- × Degradation by nuclease
- × prone to renal filtration (腎ろ過)
- × Low cell membrane permeability

<u>Solutions</u>

- Chemical modifications (e.g. 2'-OH \rightarrow -OMe, -F)
- Increase molecular weight by adding PEG

Abe, T.; et al. Folia. Pharmacol. Jpn. 2016, 147 (6), 362–367. ⁷

Aptamers that control biomolecular reactions

- Macugen is the first therapeutic aptamer
- VEGF(血管内皮增殖因子) inhibitor

Zhang, T.; *et al. Nanotechnol.* **2021**, 33 (16), 162001–162001. Feng, Y.; *et al. ACS Pharmacol .Transl. Sci.* **2024**, 7 (12), 3945-3954.

Tian, L.; et al. Sci. China. Chem. 2021, 65 (3), 574–583.

Aptamers are useful as biosensors

Electrochemical aptamer-based (E-AB) biosensor

conformational change of the aptamer
 → produce an electrical signal change

 target molecules bind both the aptamer-conjugated gold NP detection agent and the aptamer capture agent → turning the test band dark.

Detection of cancer cells in whole blood

Yang, L.; *et al. Chem. Sci.* **2023**, *14* (19), 4961–4978.(modified) Fukuyama, S.; *et al. Talanta* **2021**, *228*, 122239–122239.

Aptamer-based imaging methods are being developed

- Molecules that fluoresce when bound to aptamers
- Aptamers can be expressed intracellularly

Pietro Delcanale; et al. Angew. Chem. Int. Ed. 2020, 59 (42), 18546–18555 Yan, P.; et al. Anal. Chem. 2023, 95 (37), 13762-13768

Contents

- Introduction
 - Aptamer Characteristics
 - Advantages and disadvantages of aptamers
 - Current applications of aptamers
- Development of new applications of aptamers
 - Ligand-directed catalysis
 - TDP-43 imaging in cell
- Perspective

Summary

Site-selective acylation of protein with aptamer-catalyst conjugates

Cailing Ji.; *et al. Chem. Rev.* **2023** *123* (22), 12471-12506 (modified) Keijzer, J. F.; *et al. Chem. Commun.* **2021**, *57* (96), 12960–12963. (modified) ¹²

DMAP-aptamer modified Lys residues site-selectively

DMAP-aptamer specifically modified thrombin

- Only fluorescently labelled thrombin was observed and none of the other proteins was modified
- → DMAP-aptamer conjugates specifically modify its target protein

Keijzer, J. F.; et al. Chem. Commun. 2021, 57 (96), 12960–12963. 14

Different aptamer-catalysts modified different sides of thrombin

- TBA1-diPyOx and TBA2-diPyOx bind to the different sides of thrombiin
- TBA-diPyOx modified thrombin at residues positioned in close proximity to the respective positions of the catalyst

Keijzer, J. F.; et al. Chem. Commun. 2021, 57 (96), 12960–12963. ¹⁵

Activity control of TBA-catalyst construct

- OFF strand : hybridize with TBA-catalyst
 → form a catalytically inactive dsDNA duplex
- ON strand : complementary to the OFF strand \rightarrow bind to OFF strand and the TBA is reformed

- Upon addition of the OFF-strand, the system turned to its OFF state as no protein modification was detected.
- After removing the OFF-strand by addition of the ON strand, the modification of thrombin is again efficient.
- \rightarrow this switch successfully control the activity of TBA-catalysts

- This research shows the first DNA-based catalyst for the <u>site-selective modification</u> of a specific protein <u>using its affinity for an aptamer</u>.
- The activity of our DNA-based catalysts could be repeatedly regulated by an external stimulus.

Contents

- Introduction
 - Aptamer Characteristics
 - Advantages and disadvantages of aptamers
 - Current applications of aptamers
- Development of new applications of aptamers
 - Ligand-directed catalysis
 - TDP-43 imaging in cell
- Perspective

Summary

TDP-43

In vitro experiments have been performed using the RRM1-2 domain

- The majority of TDP-43 is localized in the nucleus in soluble forms
- A portion of TDP-43 exists as a monomer in the cytoplasm
- Disturbance in the equilibrium between the oligomeric and monomeric TDP-43 in the cytoplasm may result in aggregates

Tamaki, Y.; *et al. Int. J. Mol. Sci.* **2022**, 23 (20), 12508. Afroz, T.; *et al. Nat. Commun.* **2017**, *8* (1).

19

Aptamers that bind to TDP-43 were designed in silico

Interaction between RNA and TDP-43

- catRAPID = protein-RNA interactions prediction
- iCLIP = protein-RNA interactions database
- catRAPID and iCLIP are corresponding →good prediction

Protein Fitness Score Score ~1 = strong interaction for TDP-43 compared to other proteins

RNA Fitness Score Score ~1 = strong interaction for TDP-43

Aptamers that bind to TDP-43 were designed in silico

Interaction between RNA and TDP-43

- *cat*RAPID = protein-RNA interactions prediction
- iCLIP = protein-RNA interactions database
- catRAPID and iCLIP are corresponding →good prediction

- RNA Fitness Score Score ~1 = strong interaction for TDP-43
- Protein Fitness Score
 Score ~1 = strong interaction for TDP-43 compared to other proteins

The aptamers bound to RRM1-2 in vitro

Binding affinity of Apt-1 and nApt-1 for RRM1-2

- nApt-1 : the reverse complementary RNA of Apt-1 (negative control)
- Apt-1 has the strong affinity with a K_d = 0.1 μM whereas nApt-1 : K_d = 1.5 μM

	K _d screening (μM)	
	RRM1	RRM1-2
ot-1	0.58 ± 0.01	0.10 ± 0.01
pt-2	1.44 ± 0.40	0.75 ± 0.15
pt-3	0.90 ± 0.20	0.65 ± 0.12
pt-4	0.90 ± 0.35	1.30 ± 0.45
pt-5	1.65 ± 0.30	1.50 ± 0.30
pt-6	2.50 ± 0.65	1.60 ± 0.40

 The experimental K_d values correlate with the predicted Protein Fitness scores
 →validation of the computational design of RNA aptamers

DNA-PAINT (DNA-Point Accumulation for Imaging in Nanoscale Topography)

- labeled RNA aptamers transiently bind to TDP-43
- the fluorescent molecule emits signal only when it binds

SR Imaging of RRM1-2 aggregates with Apt-1

- Apt-1 could build up the SR image of RRM1-2
- The number of aggregates detected with Apt-1 was significantly higher than with nApt-1

Following the aggregation of RRM1-2 using Apt-1 and SAVE imaging

Following the aggregation of RRM1-2

- The number of aggregates detected with Apt-1 was significantly higher than with ThT
- Only 6 % of the aggregates detected with Apt-1 was ThT-active
 - \rightarrow Apt-1 could identify less mature oligomers

- Apt-1 visualized RRM1-2 aggregates with SR microscopy as they formed over 72 h
- Enabling their size to be accurately measured

Apt-1 does not bind to $A\beta$ or α -synuclein

Binding affinity of Apt-1 and nApt-1 for Aβ42 or α-synuclein

PAINT imaging of A β 42 or α -synuclein

а

- No binding was observed at 10 μ M for A β 42 and α -synuclein in their soluble forms
- <u>Aggregates</u> composed of both proteins were not detected
- \rightarrow Apt-1 has a specificity toward TDP-43

Zacco, E ;. et al. Nat. Commun. 2022, 13 (1).

Confocal microscopy analysis of TDP-43 and Apt-1 in live mammalian cells

- 93T cells DNA plasmid for TDP-43 expression RNA aptamer 37 °C, 24 h Wash Fixed
 - Apt-1 (red) co-localizes with TDP-43 (green) in cells
 - These images suggest an interaction between soluble/mislocalized and aggregated TDP-43 and Apt-1
 - nApt-1 (negative control) does not co-localize with TDP-43 in cells

Aptamers designed with catRAPID could be employed as probes for the visualization and identification of TDP-43

- This study shows a computational pipeline for de novo design of RNA aptamers in silico
- The ability of <u>catRAPID overcomes the limitations of SELEX</u> SELEX : need for libraries/reagents, a timeframe of <u>several months</u> and associated costs catRAPID : <u>between 2 and 7 days</u> depending on the molecule length
- Apt-1 could <u>visualize RRM1-2 aggregates with SR microscopy</u> as they formed over 72 h.
 --at the nanometer scale, enabling their sizes to be accurately measured.
- Imaging TDP-43 condensates <u>in the cell</u>.
 GFP often interferes with the condensation process.

limitation

- this computational approach <u>does not include a pipeline to predict the effect of specific chemical</u> <u>modifications</u> to enhance RNA stability or avidity towards its target.
- Apt-1 is short, consisting of 10 base pairs, and does not form a three-dimensional structure This enabled intracellular imaging.
 - ← Because TDP-43 is an RNA-binding protein, it was able to bind with a short base-paired aptamer. This may be difficult for other proteins.

Perspectives

Engineered aptamers for molecular imaging

Wearable microneedle-based electrochemical aptamer biosensing

Lin, B.; *et al. Chem. Sci.* **2023**, *14* (48), 14039–14061. Lin, S.; *et al. Sci. Adv.* **2022**, *8* (38).