Photoredox Trp-Selective Modification.

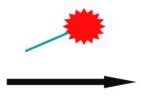
Literature Seminar M2 Ryo Kuroda 2023/11/9

1. Introduction

- 2. Representative Researches
 - ◆Trp-Selective Modifications via PET
 - ◆Trp-Modification via PET Using Visible Light
 - ◆Trifluoromethylation Using Radical Photocges
- 3. Summary

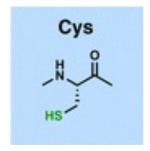

1. Introduction

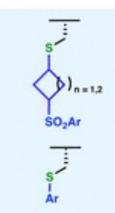
- 2. Representative Researches
 - **◆**Trp-Selective Modifications via PET
 - ◆Trp-Modification via PET Using Visible Light
 - ◆ Trifluoromethylation Using Radical Photocges


3. Summary

Importance of Protein Bioconjugation

Supernatural Functions


Therapeutics
Diagnostics
Biomaterials

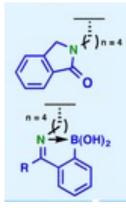


Chiang, CW. et al. Commun Chem. **2020**, *3*, 171.

Problem of Traditional Modifications

Strain-release alkylation (Ref. 45 and 46)

H, K, N/[Q], [S], T, W, Y, a-acid, a-amine


- organic/aqueous media
- mild conditions, short reaction times
- installation of high-value small, strained ring system

Pd-catalyzed arylation (Ref. 47)

D/[E], H, N/[Q], R, S/T, Y

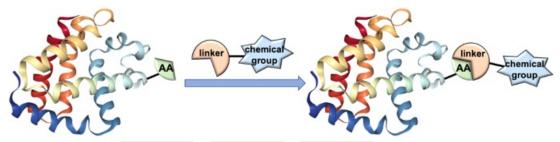
- stable, high-value products
- demonstrated use in stapling
- no N-terminal protection required
- Pd-complexes are easy to handle

Lys

Orthophthaldehyde-amine condensation (Ref. 61) protein, g-amine (Pro)

- · can be used for protein immobilization
- can be used for PEGylation (substitution at the benzo-moiety)

Iminoboronate formation (Ref. 62) protein


- potentially reversible
 - readily decomposes in the presence of glutathione
- proceeds in aqueous buffer

Problem

- Side reactions of
 Cys and Lys units,
- Limited site- and chemo-selectivity
- Limited functional group tolerance

Advantages of SET

Traditional Modification

☑ Well-developed
 ☑ User-friendly
 ☑ have been applied for in vivo tests
 ☑ Substrate-limitation

Photoredox Modification

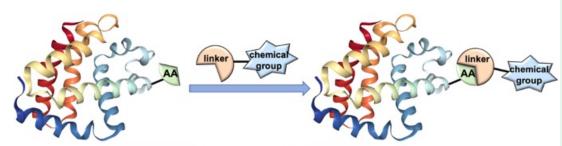
☑Visible-light-driven
 ☑Mild conditions
 ☑Good biocompatibility
 ☑Long reaction times

Electrochemical Modification

☑Well biocompatibility
 ☑Environmental friendly
 ☑Rapid reactions
 ☑Rare reports

AA = target amino acids

Chemical group = fluorescent, biotin, haptens, nanoparticles, proteins, nucleic acids or other biomolecules.


SET

- Less side reactions.
- Mild reaction conditions
- High site-selectivity
- High functional group tolerance

Chiang, CW. et al. Commun Chem. **2020**, 3, 171.

Advantages of Photoredox Bioconjugation

Traditional Modification

☑Well-developed
 ☑User-friendly
 ☑have been applied for in vivo tests
 ☑Substrate-limitation

Photoredox Modification

☑Visible-light-driven ☑Mild conditions ☑Good biocompatibility ☑Long reaction times

Electrochemical Modification

☑Well biocompatibility
 ☑Environmental friendly
 ☑Rapid reactions
 ☑Rare reports

AA = target amino acids

Chemical group = fluorescent, biotin, haptens, nanoparticles, proteins, nucleic acids or other biomolecules.

✓ Photoredox bioconjugation

- Mild and biocompatible conditions
- The kinetics of the reaction could be easily controlled.
- ✓ Visible-light-induced photocatalytic methods
 - The structures of bioactive molecules are preserved.
 - Quite rare

Chiang, CW. et al. Commun Chem. **2020**, 3, 171.

Advantages of Trp

Advantages of Tyr and Trp

✓ C(sp²)–H
functionalization of
aromatic compounds
has been extensively
developed

✓ Reactivity can be activated by SET

Chiang, CW. et al. Commun Chem. **2020**, 3, 171.

Advantages of Trp

- ✓ The rarest of the amino acids
- ✓ Widely and evenly dispersed in the proteome
- \checkmark The most electron-rich π -system of amino acids
 - Electrostatically driven non-covalent
 - H-bonding to neighboring functionality via indolic N–H bond.

- ✓ Enriched at centers of biochemical significance
- Maintain protein structural integrity through noncovalent interactions.

Problem of Traditional Photoredox Trp Modifications

Chiang, CW. et al. Eur. J. Org. Chem. 2019, 46, 7596-7605.

Conversion: 45%, isolated yield: 16%

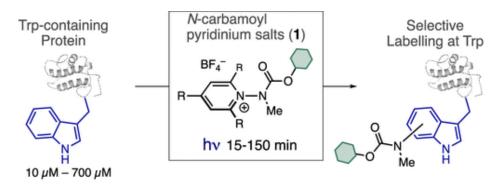
Shi, ZC. et al. J. Am. Chem. Soc. 2018, 140, 6797-6800.

Problem

- ✓ Depends on Trp-selective electrophile generation
 - Compete with other biological nucleophiles
- ✓ Limited biocompatibilities
 - ✓ Few examples of the use as probes in situ

1. Introduction

2. Representative Researches

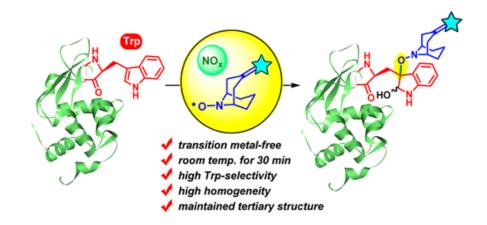

- **◆Trp-Selective Modifications via PET**
- ◆ Trp-Modification via PET Using Visible Light
- ◆ Trifluoromethylation Using Radical Photocges

3. Summary

Trp-Selective Modification via PET

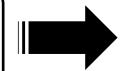
Selective Modification of Tryptophan Residues in Peptides and Proteins Using a Biomimetic Electron Transfer Process

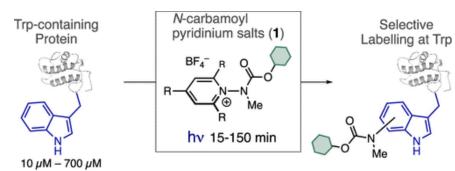
■ Putative mechanism: Photo-induced electron transfer ■ No catalysts or cosolvents


■ Wavelength dependent activation by directly accessing [Trp]* or [1]*

Taylor, M. T. et al. J. Am. Chem. Soc. **2020**, 142, 9112–9118.

- ✓ PET between Trp and the pyridinium salt
- ✓ Trp-selectivity
- ✓ Pure aqueous conditions
- √ N-carbamoylpyridinium salt

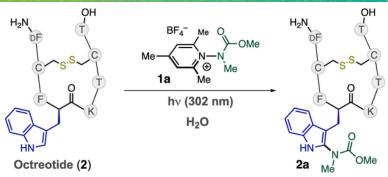

Problem Presentation



Kanai, M. et al. J. Am. Chem. Soc. 2016, 138, 10798- 10801,

Trp-selective electrophiles

→Compete with other biological nucleophiles


- Putative mechanism: Photo-induced electron transfer No catalysts or cosolvents
- Wavelength dependent activation by directly accessing [Trp]* or [1]*

Taylor, M. T. et al. J. Am. Chem. Soc. 2020, 142, 9112-9118.

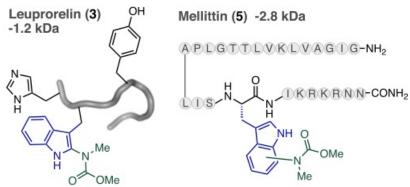
This research:
Trp's inherent photolability

Selected Optimization

Entry	[2] µM	[1] mM	Buffer <u>a</u>	Additive	<i>t</i> (min)	Conversion of 2b	%2a (mono/di) <u>b</u>
1	100	10	NH ₄ OAc		30	>95%	34% (>20:1)
2	100	7	NH₄OAc		30	>95%	27% (>20:1)
3	100	7	NH ₄ OAc	1 mM GSH	30	>95%	95% (>20:1)
4	10	7	NH₄OAc	1 mM GSH	30	>95%	95% (>20:1)
5	100	7	Na ₂ HPO ₄	1 mM GSH	45	>95%	<95% (3:1) Be
6	100	7	NaOAc	1 mM GSH	30	>95%	95% (>20:1)
7 <u>c</u>	100	7	NH ₄ OAc	1 mM GSH	30	0%	0%

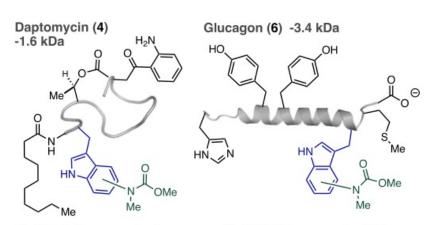
- ✓ GSH acts as a reactive oxygen species scavenger
- ✓ Trp selectivity
- √ High conversion


1a


- √ Water solubility
- ✓ Stability
 - Methylated positions inhibits nucleophilic addition

Taylor, M. T. et al. J. Am. Chem. Soc. **2020**, 142, 9112–9118.

Substrate Scope



100 μ M: >95% conversion^{a,b} label:degradation ratio: 14:1 500 μ M: 92% conversion^{a,c} 73% isolated yield of 3a^d

70 μ M: **85% conversion**^a label:oxidation ratio: > 20:1

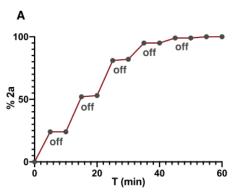
✓ Trp selectivity

✓ Good conversion

10 μ M: **95% conversion**^a mono:di labelling ratio: 9:1

10 μM: **86% conversion**^{*a,e,f*} label:oxidation ratio: 13:1

Mechanistic Studies


(A) Temporal control experiments with 2 and 1a

(B) Additive and light-perturbation experiments

- ✓ Spin-trap TEMPO and Nal inhibited the reaction
 - Quencher of Trp fluorescence
- ✓ A large excess of prenyl alcohol has no effect.
 - It trap free N-centered radical

(D) Mechanistic and NMR experiments

- ✓ R,S-Trp (>95% C-4 deuteration (302 nm), 75%
 C-4 deuteration (311 nm))
- √ 2a、3a (Modification site : indole C2)

D NMR Characterisation:

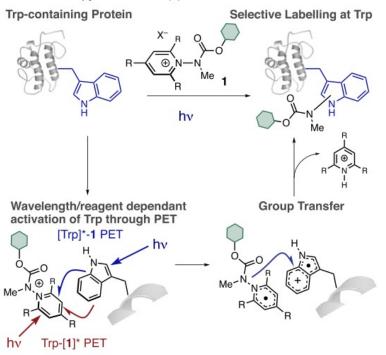
Confirms Trp photoexcitation

R,S-Trp	2a, 3a
D ₃ N O⊝	Y° 0
ND	HN
D	HN N OMe
hv (302 nm) D ₂ O, 90 min	Mé Indole C2 position
>95% C-4 douteration	madic O2 position

В

Additive	% conversion ^a	% 2a
none	>95%	>95%
Me N Me N Me O. Me (7 mM)	34%	<10%
Nal (7 mM)	<5%	<5%
Me OH	>95%	>95%

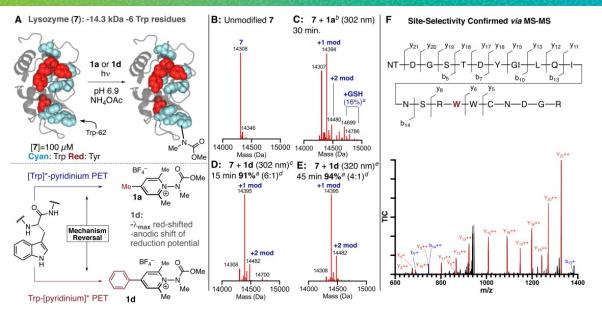
h∨ condition	% conversion ^a	% 2a ^a			
365 nm ^c	0%	0%			
305 nm longpass filter:					
30 min	35%	35%			
120 min	>95%	>95%			

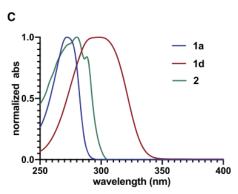

Taylor, M. T. et al. J. Am. Chem. Soc. 2020, 142, 9112-9118.

modification

Mechanistic Studies

B Coupling Trp's photolability with selective bond formation using *N*-substituted pyridinium salts (1)


- ✓ Quantum yield of the labeling of 2 is consistent with that of Trp-photionization →Electron transfers from [Trp]*
- ✓ PET advances the reaction


Possible mechanism

- [Trp]* activates 1 as a single electron reductant
- 2. The labile N-N bond of 1 undergoes homolytic cleavage
- Trp radical and a reactive N-centered radical generates, recombines and modifies Trp selectively.

Modification of lysozyme

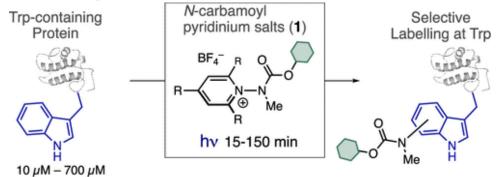
Taylor, M. T. et al. J. Am. Chem. Soc. **2020**, 142, 9112–9118.

Problem of 1a

- ✓ Cys-glutathionylation
 - Reduction of proximal disulfide by [Trp]*
 - Thiyl radical exchange

1d

- ✓ Trp \rightarrow [1]* is the main pathway
- Minimize degradation due to intraprotein PET and avoid side reactions
- ✓ (C) Irreversible reduction potential shifted anodic compared to 1a



Modification of 1d

- No glutathionylation
- Trp-62 selectivity

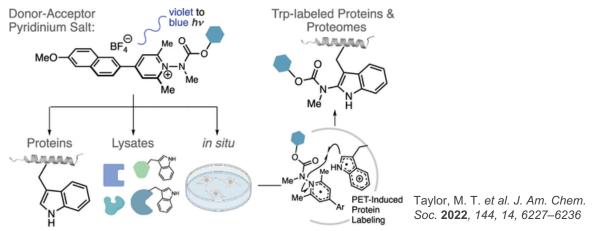
Selective Modification of Tryptophan Residues in Peptides and Proteins Using a Biomimetic Electron Transfer Process

- Putative mechanism: Photo-induced electron transfer No catalysts or cosolvents
- Wavelength dependent activation by directly accessing [Trp]* or [1]*

Taylor, M. T. *et al. J. Am. Chem.* Soc. **2020**, 142, 9112–9118.

- ✓ PET between Trp and the pyridinium salt
- ✓ Site selectivity for Trp and tolerant to other amino-acid
- ✓ Pure aqueous conditions
- ✓ *N*-carbamoylpyridinium salt

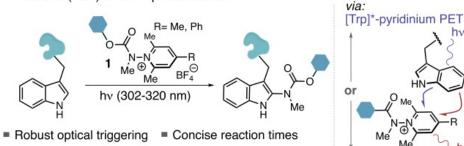
1. Introduction


2. Representative Researches

- **◆**Trp-Selective Modifications via PET
- **◆Trp-Modification via PET Using Visible Light**
- ◆ Trifluoromethylation Using Radical Photocges
- 3. Summary

Trp-Modification via PET Using Visible Light

Donor-Acceptor Pyridinium Salts for Photo-Induced Electron-Transfer-Driven Modification of Tryptophan in Peptides, Proteins, and Proteomes Using Visible Light



- ✓ Trp modification through PET
- ✓ N-carbamoyl pyridinium salts have donor—acceptor relationship.
- ✓ Surface exposed Trp-selectivity of peptides and proteins.
- ✓ Enrichment from live cell

Problem Presentation

B Prior Work: N-carbamoyl pyridinium salts (1) for photo-induced electron transfer (PET) driven Trp modification.

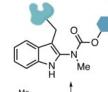
Taylor, M. T. et al. J. Am. Chem. Soc. 2020, 142, 9112-9118.

N-carbamoylpyridinium salt

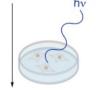
■ [1]= mM, Uv-B light required

Trp-[pyridinium]* PET

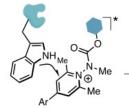
Disadvantages

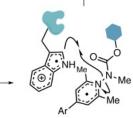

No organic cosolvents

✓ UV-B light induced photodegradation of labile proteins and unintended cellular stress

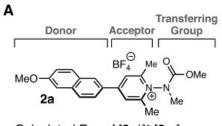

Proteomic Profiling

C This work: Pyridinium probe (2) for Trp modification on purified proteins and *in situ*.





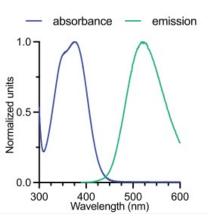
Trp-labeled proteome

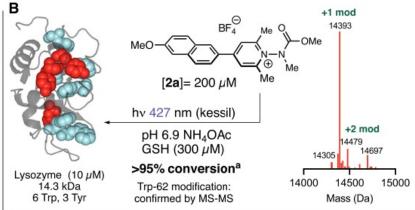

Trp-[pyridinium]* PET

Radical Fragmentation-Recombination

Taylor, M. T. et al. J. Am. Chem. Soc. **2022**, 144, 14, 6227–6236

Catalyst design


Calculated E_{1/2} of [**2a**⁺]*:[**2a**•] : +1.330 eV


Fluorescence lifetimes (τ_{Fl}) :

CH₃CN: 3.3 ns 1,2-DCE: 4.1 ns

 H_2O : τ_1 : 0.3 ns τ_2 : 3.4 ns

Taylor, M. T. et al. J. Am. Chem. Soc. **2022**, 144, 14, 6227–6236

Pyridinium scaffold 2a

- ✓ Low photo-oxidation potential of 2
 - Donor-acceptor relationship
- √ Photoexcitation of 2a with visible spectrum
 - Absorbance of 2a > 450 nm

(B) Labeling of lysozyme

- ✓ Performance: 2a >> 1
- ✓ Visible light

Study of photophysical properties

500 550 600 650

Wavelength (nm)

Figure S14. Absorption and emission spectra

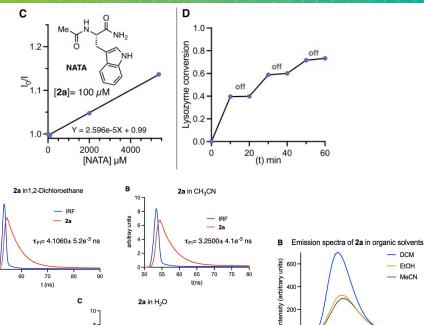


Figure S15. Fluorescence lifetimes of 2a and 2b.

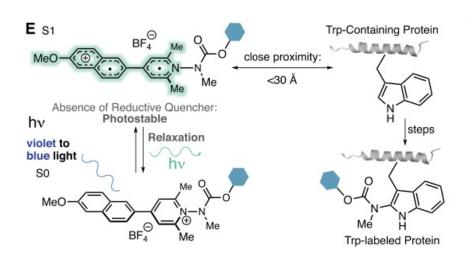
(C) Stern–Volmer plot of fluorescence quenching of 2a with NATA

(D) Temporal control experiments

(S15) Fluorescence lifetimes of 2a

✓ Lifetime decreases as solvent polarity increases

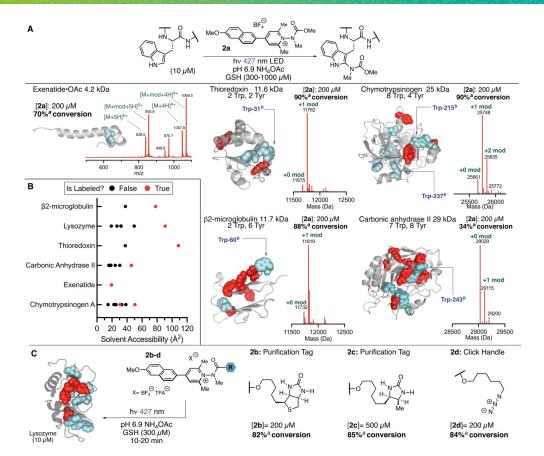
(S14) Emission spectra of 2a


√ Fluorescence intensity decreases as solvent polarity increases

- 1. Excited state of 2a is suppressed in aqueous systems.
- 2. 2a* cannot defuse widely

Study of photophysical properties

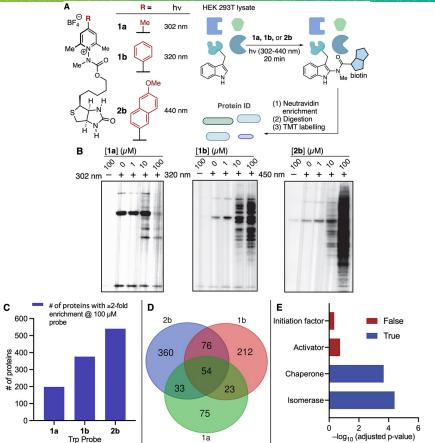
(E) Mechanistic considerations


- ✓ Excitation from S0 to S1 is supported by naphthyl → pyridinium charge transfer
- ✓ The redox potential of 2a is low

Reason for Trp selectivity

- 1. Short-lived excited state
- 2. Protein-2a precomplexation via hydrophobic effects
- 3. Kinetic preference for Trp

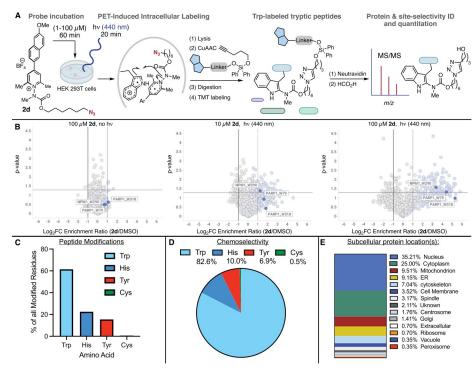
Substrate scope and Transferring Group Scope



(A) Substrate scope

- √ Trp-selectivity
- ✓ Clean reaction profiles
- ✓ No photodegradation
- (B) Solvent accessibilities
- ✓ Selectivity for the most solvent-accessible residue
- (3C) Transferring group scope

Evaluation of Trp probe designs



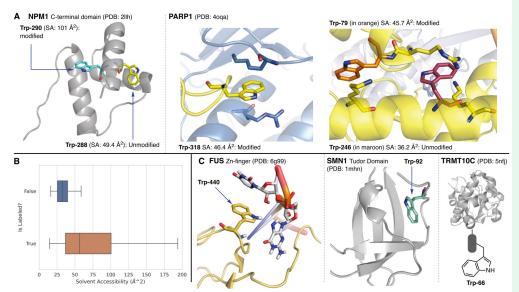
- (B) Post-enrichment elution profile
- (C) Number of proteins identified at 100 μM
- (D) Overlap of proteome coverage by each probe
- ✓ 2b had the most unique enriched proteins
- (E) Classes of proteins showing significant enrichment with 2b

Taylor, M. T. et al. J. Am. Chem. Soc. **2022**, 144, 14, 6227–6236

Peptide-level enrichment of Trp in cells

Taylor, M. T. et al. J. Am. Chem. Soc. **2022**, 144, 14, 6227–6236

(B) Volcano plots showing enrichment of the tryptophan-ome


- ✓ Trp-selectivity in situ
- Ability to enrich the tryptophan-ome directly from cell culture.
- (C) Residue modifications by percentage
- (D) Chemo-selectivity based on amino acid relative frequency

(E) Subcellular localization of Trpmodified proteins

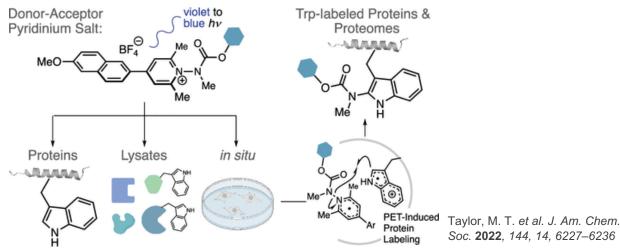
- ✓ 2d readily crosses the plasma membrane
- ✓ the net positive charge of 2d doesn`t restrict Trp
 modification to mitochondrial proteins.

Peptide-level enrichment of Trp in cells

(A) Modification of functional Trp

- > Trp290 of NPM1 (genomic homeostasis)
- ➤ Trp79 and Trp318 in PARP1 (DNA damage detection and repair)

(B) Comparison of solvent accessibility in modified and unmodified Trp in situ


✓ Selectivity of Trp with enhanced surface exposure

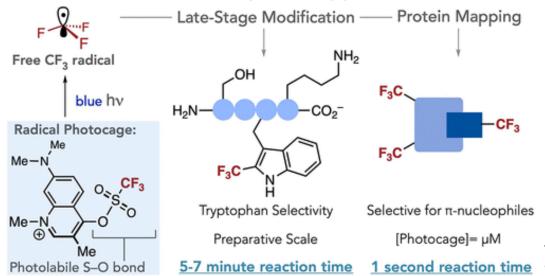
(C) Modified Trp on proteins associated with disease

- ➤ Trp440 in FUS (neurodegenerative diseases)
- Trp92 in the Tudor domain of SMN1 (spinal muscular atrophy)
- ➤ Trp66 in the mitochondrial protein TRM10C

Donor-Acceptor Pyridinium Salts for Photo-Induced Electron-Transfer-Driven Modification of Tryptophan in Peptides, Proteins, and Proteomes Using Visible Light

- ✓ Donor–acceptor pyridinium salt scaffold enables PET-driven Trp modification
- ✓ Good conversions and selectivity
- ✓ The carbamate transferring group can install functional handles to proteins.
- ✓ Enrichment of the tryptophan-ome from both lysates and live cell

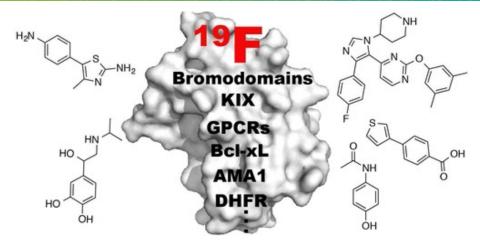
1. Introduction


2. Representative Researches

- **◆**Trp-Selective Modifications via PET
- ◆ Trp-Modification via PET Using Visible Light
- **◆**Trifluoromethylation Using Radical Photocges
- 3. Summary

Trifluoromethylation Using Radical Photocges

Rapid Biomolecular Trifluoromethylation Using Cationic Aromatic Sulfonate Esters as Visible-Light-Triggered Radical Photocages



Taylor, M. T. et al. J. Am. Chem. Soc. **2023**, 145, 42, 22878–22884

- ✓ Quinolinium sulfonate ester achieves decaging
- ✓ Protein and protein-interaction mapping
- ✓ Scalable peptide trifluoromethylation

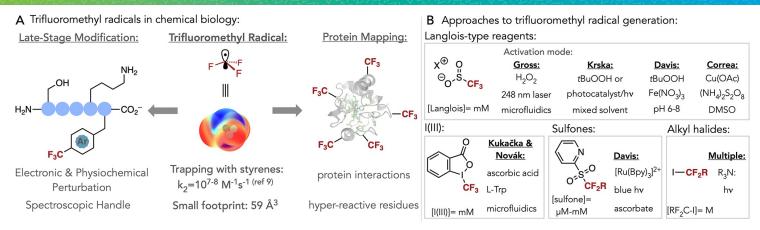
Importance of Incorporation of CF3

Incorporation of CF3 into proteins

- ✓ Precision alteration of physiochemical properties with minimal steric change
 - Hydrophobicity
 - Small size
 - Strong electron-withdrawing

√ ¹ºF-labeled amino acids accelerate drug design

¹⁹F-NMR

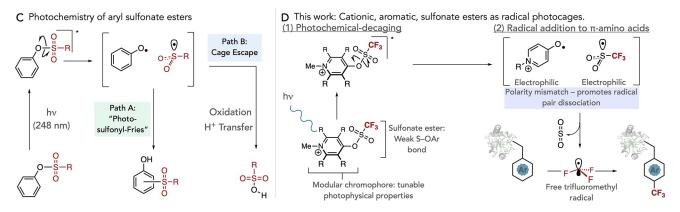

- High sensitivity
- Extreme responsiveness to the local environment
- Broad chemical shift range

Problem

Few approaches compatible with biomolecular structures

Background research

Taylor, M. T. et al. J. Am. Chem. Soc. 2023, 145, 42, 22878–22884


(B) Example of trifluoromethylation of biomolecules by radicals

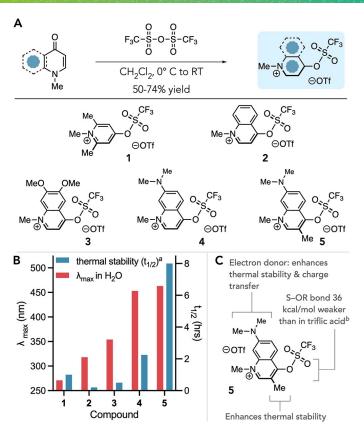
- ✓ Langlois reagent
- ✓ Sulfonylpyridine photocatalyst
- ✓ Hypervalent iodine reagents
- √ Perfluoroalkyl iodide

(A) Advantages of CF₃.

- 1. Electrophilicity
- 2. Small

(C) Photochemistry of aromatic, sulfonate esters

- ✓ They have a weak S-OAr bond that cleaves homolytically upon photoexcitation to generate sulfonyl and phenoxy radicals.
 - → They can be used as photocages


(D) Proposed mechanism

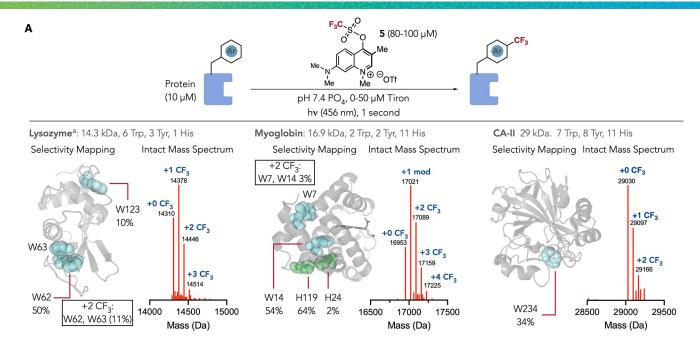
Taylor, M. T. et al. J. Am. Chem. Soc. 2023, 145, 42, 22878-22884

- 1. Cationic, aromatic chromophore further weakens the photolabile S-OAr bond and promotes the dissociation of radical pairs by photolysis.
- 2. This liberates free CF₃ radicals.
- 3. Then, this radical captures peptides and proteins.

Selected Optimization

(2A) Synthesis of photocages 1–5

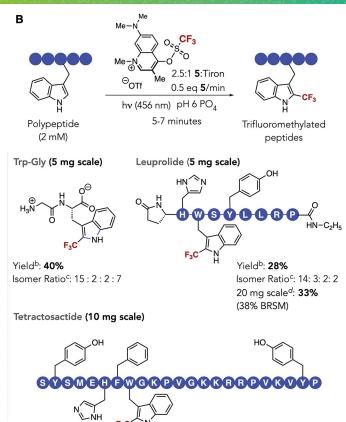
(2B) Evaluation of thermal stability and absorption properties


- **>** 5
- Significantly improved half-life
- Absorbance shifted into the visible spectrum

(2C) Structural properties of 5

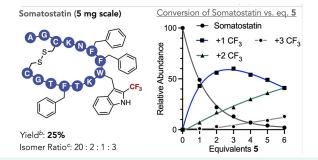
 S-OAr bond is weak enough to be cleaved by photoexcitation

Protein footprinting



Taylor, M. T. et al. J. Am. Chem. Soc. **2023**, 145, 42, 22878–22884

✓ Chemoselectivity toward nucleophilic aromatic residues

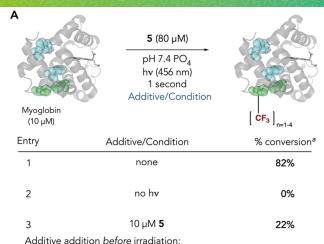


Preparative scale synthesis

Yieldb: 20%

Isomer Ratio^c: C2 isomer only

Taylor, M. T. et al. J. Am. Chem. Soc. **2023**, 145, 42, 22878–22884


(B) Preparative scale synthesis

- > Somatostatin
 - +1 CF3 reached maximum after addition of 3 eq of 5
 - Total isolation yield : 25%
 - Regioisomer (main : C2, minor : C4, C7)
- > Gly-Trp, leuprolide, Tetracosactide
 - 20-40%, The main modification site: Trp
- √ Applicable to larger scales

Additive and condition studies

0%

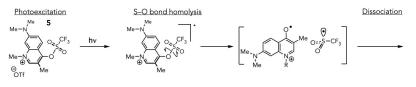
TEMPO (500 µM)

Additive addition after 1 second of irradiation:

- (A, entry 3) A significant conversion was obtained with 1s-irradiation.
- (A, entry 4) TEMPO inhibited modification.
- (A, entry 5) Addition of TEMPO after 1 s-irradiation didn't reduce conversion. The reaction time is 1 s.
- (B) Byproducts included a radical-pair recombination product.
- (C) Quantification of light
- (D) 5 decaged to label myoglobin at biological pH.

D	i. Additive/pertubation prior to irradiation					
Entry	[5]	Time hv	Additive/perturbation	[Additive]	Conversion	
					(%)	
1	80 µM	1 s		0 μΜ	82	Taylor M. T. of
2	80 µM	1 s	TEMPO	500 µM	0	Taylor, M. T. et
3	80 µM	1 s	vial shielded from hv	0 μΜ	0	al. J. Am. Chem.
4	10 µM	1 s		0 µM	22	Soc. 2023 , 145, 42,
5	80 µM	1 s	pH 5 PO₄	0 µM	71	22878–22884
6	80 µM	1 s	pH 6 PO₄	0 µM	70	22070 22004
7	80 µM	1 s	pH 8 PO ₄	0 µM	71	2.0
						38

Possible mechanism

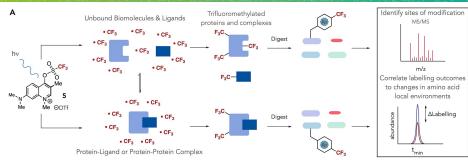

Possible mechanism

- Optically induced photolysis of labile S-OAr bonds forming quinoloxy-sulfonyl radical pairs.
- Thermal extrusion of SO2 and radical alkylation of π-nucleophiles with free trifluoromethyl radicals.

Evidence supporting a radical mechanism

- Regioisomers of trifluoromethylated Trpconjugates
- (2) TEMPO inhibited modification.
- (3) Byproducts included a radical-pair recombination product.

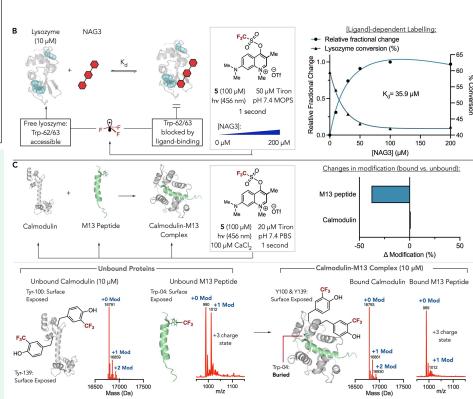
Plausible Mechanism for photo-induced trifluoromethylation with 5:



Possible rearomatization mechanisms:
Possibility 1:

Taylor, M. T. et al. J. Am. Chem. Soc. **2023**, 145, 42, 22878–22884

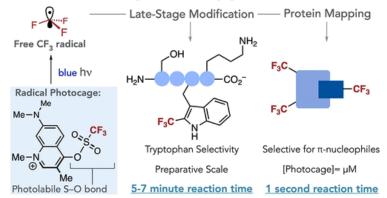
Mapping of protein interactions



(B) Mapping of the interaction between lysozyme and NAG3

• The binding affinity was consistent with previously reported values .

(C) Mapping of the calmodulin–M13 complex

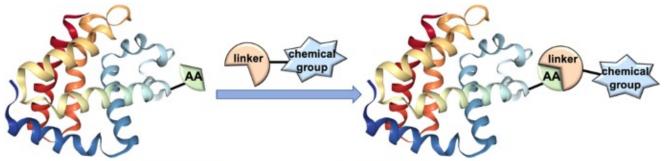

- ✓ : Calmodulin–M13 complex hides M13-W4
- Unbound Proteins
 - Strong labeling with only M13-W4
- Calmodulin–M13 complex
 - M13-W4 labeling was dramatically reduced.
- ✓ Protein mapping using 5 allows investigation of environmental changes.

Taylor, M. T. et al. J. Am. Chem. Soc. **2023**. 145. 42. 22878–22884

Rapid Biomolecular Trifluoromethylation Using Cationic Aromatic Sulfonate Esters as Visible-Light-Triggered Radical Photocages

Taylor, M. T. et al. J. Am. Chem. Soc. **2023**, 145, 42, 22878–22884

- ✓ Scaffold 5 enables ultrarapid protein labeling via a photolysis of S–O bond followed by liberation of a trifluoromethyl radical.
- ✓ Protein and protein-interaction mapping
- ✓ Preparative scale trifluoromethylation of peptides.


1. Introduction

2. Representative Researches

- **◆**Trp-Selective Modifications via PET
- ◆Trp-Modification via PET Using Visible Light
- ◆ Trifluoromethylation Using Radical Photocges

3. Summary

Photoredox Trp modification

- ✓ Mild and biocompatible conditions.
- ✓ Trp-selectivity
- ✓ Enrichment of the tryptophan-ome from both lysates and live cell
- ✓ Protein and protein-interaction mapping