

Literature Seminar

2021/11/11 Ryo Kuroda

Contents

- 1. Introduction
- 2. Representative Researches
 - 1. Mechanistic Classification
 - 2. Electrochemically Mediated Photoredox Catalysis (ePRC)
 - 3. Decoupled PhotoElectroChemistry (dPEC)
 - 4. Interfacial PhotoElectroChemistry (iPEC)
- 3. Summary

Contents

1. Introduction

- 2. Representative Researches
 - 1. Mechanistic Classification
 - 2. Electrochemically Mediated Photoredox Catalysis (ePRC)
 - 3. Decoupled PhotoElectroChemistry (dPEC)
 - 4. Interfacial PhotoElectroChemistry (iPEC)
- 3. Summary

Electrochemical Cells

divided cell ("H" cell)

Modes of Operation

constant voltage (cv)

constant current (cc)

reference electrode

Electrodes

Solution

THF DCM Acetone Methanol MeCN DMA
$$H_2O$$
8 9 21 33 38 38 80 ϵ

more resistance less resistance

cations anions

Li⁺ Na⁺ Et₄N⁺ Bu₄N⁺ \longrightarrow ClO₄⁻ PF₆⁻ BF₄⁻ OAc⁻ I⁻ Brimix and match

Photoredox Chemistry

Visible-Light Photoredox Catalysis

Photoelectrochemical Organic Synthesis

Photoelectrochemical Organic Synthesis

The limitation of **electrochemistry**

- ✓ Low conductivity of organic solvents
- ✓ Unselective redox processes
- ✓ Limited potential of mediators

The limitation of **photoredox chemistry**

- Energy constrained
- ✓ Energy losses
- ✓ Stoichiometric oxidant or reductant

✓ Atom efficient
✓ Large redox window
✓ High selectivity / energy efficiency

Contents

1. Introduction

2. Representative Researches

- 1. Mechanistic Classification
- 2. Electrochemically Mediated PhotoRedox Catalysis (ePRC)
- 3. Decoupled PhotoElectroChemistry (dPEC)
- 4. Interfacial PhotoElectroChemistry (iPEC)
- 3. Summary

Mechanistic Classification

electrochemically mediated PhotoRedox Catalysis (e-PRC)

decoupled PhotoElectroChemistry (dPEC)

interfacial PhotoElectroChemistry (iPEC)

Photochemical components Photochemical components Photochemical components

Interdependent roles

Separate roles

Reactions occur at Photoelectrode surfaces

Contents

1. Introduction

2. Representative Researches

- 1. Mechanistic Classification
- 2. Electrochemically Mediated PhotoRedox Catalysis (ePRC)
- 3. Decoupled PhotoElectroChemistry (dPEC)
- 4. Interfacial PhotoElectroChemistry (iPEC)
- 3. Summary

The Mechanism of ePRC

Tunable electrochemical redox + Selective light energy transfer

= Transient generation of super-redox agent

The Mechanism of ePRC

Oxidation

The Mechanism of ePRC

A. Electrophotocatalytic oxidation

R
$$\frac{I}{I}$$
29-1

TAC (cat.)

N-Heterocycle [N], HOAc

LiClO₄, CH₃CN

 $C(+) \mid Pt(-), U_{cell} = 1.5 \text{ V, CFL } (23 \text{ W})$

R $\frac{I}{I}$
29-2

B. Electrophotocatalytic reduction

Oxidation

Reduction

The Example of ePRC

Photoelectrocatalytic oxidation of unactivated alcohols under e-PRC using RFT

The Limitation of Flavin-Catalyzed Oxidation of Alcohols

✓ Flavin-Catalyzed Oxidation of Alcohols

Entry 1: w/o **TU-1**: 40% yield (with 21 mM H_2O_2) Entry 2: 10% **TU-1**: 85% yield (with 34 mM H_2O_2)

Entry 3: w/o **TU-1**: 0% yield (H_2O_2 not detected) Entry 4: 10% **TU-1**: 3% yield (with 2.6 mM H_2O_2)

$$✓ R1 = Ph, p-MeO-Ph, R2 = H, Me$$

→ Successful reaction

$$\sim$$
 R₁ = alkyl, R₂ = H, alky

→ No reaction

The Decomposition of Thiourea

(A) Proposed thiourea decomposition pathways

$$\begin{array}{c|c}
S & H_2O_2 \text{ or } {}^1O_2 \\
\hline
H_2 O_2 \text{ or } {}^1O_2 \\
\hline
HN & NH_2 \\
\hline
TU-1 \cdot O_2
\end{array}$$

Entry	RFT	oxidant	TU-2 recovered
1	5 mol%	H ₂ O ₂ (1 equiv)	40%
2	none	H ₂ O ₂ (1 equiv)	37%
3	5 mol%	O ₂ + blue LED	0%
4	none	O ₂ + blue LED	100%

- ✓ RFT + O₂ or H₂O₂ (BP)

 → Decomposition of thioures
- → Decomposition of thiourea
- ✓ Influence O₂ > H₂O₂

The Decomposition of Thiourea

✓ Oxidation potential 1a < 1b</p>

✓ Speed

Decomposition of thiourea > Oxidation of **1b**

✓ Mild conditions

= Photoelectrochemistry

Optimization

Entr	y Thiourea	Electrolyte	1b Conversion	2b Yield ^b
1	TU-1	LiClO ₄	75%	67%
2	TU-2	LiCIO ₄	85%	78%
3	TU-3, -4, or -5	LiCIO ₄	27–30%	20–26%
4	TU-6	LiCIO ₄	7%	<5%
5	TU-7	LiCIO ₄	5%	<5%
6	TU-8	LiCIO ₄	27%	21%
7	TU-2	TBABF ₄	24%	18%
8	TU-2	TBAPF	95%	56%
9	TU-2	LiOTf	>95%	96% (91%°)
10 ^d	TU-2	LiOTf	8%	<5%
11 ^e	TU-2	LiOTf	8%	<5%
12 ^f	TU-2	LiOTf	6%	<5%
13	none	LiOTf	11%	6%
14 ⁹	TU-2	LiOTf	12%	9%

Scheme 6. Photoelectrocatalytic oxidation of alcohols. [a] Reaction conditions: alcohol (0.2 mmol, 1 equiv), RFT (5 mol%), TU (10 mol%), electrolyte (3.5 mL, 0.1 m in MeCN), H_2O (0.2 mL), cell voltage $U_{cell} = 2.5$ V (initial anodic potential $E_{anode} \approx 0.8$ V vs. SCE), blue LED. [b] Yield determined by 1H NMR spectroscopy. [c] Yield of isolated product. [d] Without blue LED. [e] Without RFT. [f] Without electricity. [g] Electrolysis at a constant anodic potential of 0.58 V. [h] Reaction time 36 h.

✔ Electrical potential, blue LED, RFT, thiourea

→ All essential

Substrate Scope

(B) Oxidation of several other alcohols^{a,c}

Scheme 6. Photoelectrocatalytic oxidation of alcohols. [a] Reaction conditions: alcohol (0.2 mmol, 1 equiv), RFT (5 mol%), TU (10 mol%), electrolyte (3.5 mL, 0.1 м in MeCN), H_2O (0.2 mL), cell voltage $U_{cell} = 2.5$ V (initial anodic potential $E_{anode} \approx 0.8$ V vs. SCE), blue LED. [b] Yield determined by ¹H NMR spectroscopy. [c] Yield of isolated product. [d] Without blue LED. [e] Without RFT. [f] Without electricity. [g] Electrolysis at a constant anodic potential of 0.58 V. [h] Reaction time 36 h.

✓ 2c ~ 2d
Successful reactions

✓ 2j

The carboxylic acid → Affordable

Probing the Role of Thiourea

(A) Proposed key reaction intermediates

(B) Detecting thiyl radicals in photoelectrocatalytic reactions

✓ Graph (Photoquenching of RFT) Thiourea is oxidized by RFT*

Probing the Role of Thiourea

TU-2 (10 mol%)
TU-2 (20 mol%)
TU-2 (40 mol%)

TU-2 (40 mol%)

TU-2 (40 mol%)

Reaction time (hour)

- ✓ Distinct odor of H₂S
- ✓ More TU-2, less desired reaction
- ← More TU-2, more Reaction 1
- ✓ TU-2 (40 mol%)
- < 4h Desired reaction < Reaction 1
- > 4h Desired reaction > Reaction 1

Probing the Role of Thiourea

(B) Radical probe experiment

OH
Standard conditions

10, 2%

11, 2%

Me
OH
Ph
Me
Ne
OH
Ph
Me
Ne
OH
Ph
Me
Ne
OH
Ne
OH
Ph
Me
Ne
Ne
OH
Ne
Ne
Ne
Ne
Ne
Ne
Ne
Ne

- ✓ First peaks: Including Reaction 1 ??
- ✓ Second peaks : Reaction 2
- ✓ More 1b, higher second peaks
- \rightarrow TU-2 is catalyst
- ✓ B
- 5 (9) is the intermediacy

Reaction 1

Reaction 2

Understanding the Role of RFT

Entry	Photocatalyst	Thiourea	1Ь	2b
·	•		Conv. [%] ^[a]	Yield [%] ^[a]

1	RFT	yes	75	67
2	$[Ir(dF(CF_3)ppy)_2(dtbpy)]PF_6$	yes	32	31
3	$[Ir(dF(CF_3)ppy)_2(dtbpy)]PF_6$	no	5	< 5
4	[Mes-Acr-Me] ⁺ ClO ₄ -	yes	10	8
5	[Mes-Acr-Me] ⁺ ClO ₄ ⁻	no	< 5	< 5
6	none	yes	13	< 5
7 ^[b]	none	yes	7	< 5
8 ^[c]	none	yes	8	< 5

[a] Determined by ${}^{1}H$ NMR spectroscopy. [b] Controlled potential electrolysis at $E_{anode} = 1.09$ V vs. SCE without light irradiation. [c] Controlled current electrolysis at i = 0.5 mA without light irradiation.

√ 6~8

No photocatalyst (RFT)
Reaction 1 predominates

V 1

Reaction 1 is **suppressed** by the transient photoexcited state of **RFT**

→ Successful reaction

Proposed Catalytic Cycles

Short Summary

Figure 28. (A, B) EPC employing RFT as both electro- and photochemical catalyst in a single catalytic cycle.

✓ Photoelectrocatalytic oxidation of unactivated alcohols under e-PRC using RFT

✓ Advantage

HAT of thiourea oxidizes previously untouched aliphatic alcohols

✓ Good Point No O₂, Reduced H₂O₂

→ O₂ promotes degradation of thiourea H₂O₂ is byproduct

O₂ in traditional method (Flavin photocatalysis)

Flavin photocatalysis

Other Examples of iPEC

Reductive

RFT 29

Contents

1. Introduction

2. Representative Researches

- 1. Mechanistic Classification
- 2. Electrochemically Mediated PhotoRedox Catalysis (ePRC)
- 3. Decoupled PhotoElectroChemistry (dPEC)
- 4. Interfacial PhotoElectroChemistry (iPEC)
- 3. Summary

The Example of dPEC

✓ Hofmann–Lçffler–Freytag (HLF) amination of C(sp3)-H bonds under dPEC

A) Strategies for electrochemical HLF-type reactions

The Limitation of Previous Electrochemical HLF amination

Scheme 1. Comparison of previous electrochemical methods for C-(sp³)—H amination. For detailed procedures, see Refs. [12–14] and the Supporting Information. Yields were determined by ¹H NMR spectroscopy with *m*-xylene as an internal standard. Conversion is shown within parentheses. [a] Reaction conditions: **1a** or **1b** (0.2 mmol) and $^{n}Bu_{4}NPF_{6}$ (0.1 m) in HFIP (10 mL), 2.5 mA, RT. [b] Reaction conditions: **1a** or **1b** (0.2 mmol), NaOAc (0.2 mmol) and $^{n}Bu_{4}NBF_{4}$ (0.2 mmol) in DCE/HFIP (6 mL, 2:1), 7.5 mA, RT. [c] **1a** or **1b** (0.4 mmol), NaOMe (0.2 mmol) and KBr (0.2 mmol) in methanol (6 mL) at 65 °C, 100 mA. DCE = 1,2-dichloroethane. HFIP = 1,1,1,3,3,3-hexafluoro-2-propanol, n.d. = not detected, Ts = 4-toluenesulfonyl.

✓ 1a → 2a

Successful reaction

✓ 1b → 2b

No reaction

- ✔ Promote Reaction 1
- = Photoelectrochemistry

Optimization

R) Anodic notentials

Table 1: Combined electrochemical/photochemical iodide-mediated process for C—H amination.^[a]

b) Ariodic poteriti	ais		
0.5 V		aromatics, atics, thioethers	Approximate oxidation potential of different functional groups
		amides, alcoh	
		ketones, aryl l	nalides
_		'	
①	Br)		ET-PT-ET
		PCET	
0	1.0	<u>'</u>	2.0 V vs Fc/Fc ⁺
Im	proved functional-gr	roup tolerance	

Entry	Potential/V vs. Fc/Fc ⁺	TBAI	Yield [%]
1	0.3	10 mol%	4
2	0.4	10 mol %	70
3	0.5	10 mol%	75 (72)
4	0.5	_	n.d.
5 ^[b]	0.5	10 mol%	19

[a] The reaction was performed on a 0.5 mmol scale under constant potential (CP) conditions. Yields were determined by ^{1}H NMR spectroscopy with m-xylene as an internal standard. Yield of isolated product shown within parentheses. [b] Without irradiation TFE = 2,2,2-trifluor-oethanol, n.d. = not detected.

✓ 3

0.5 V → Best Potential

✓ 4, 5
TBAI, irradiation → Essential

Optimization

Table 2: Combined electrochemical/photochemical iodide-mediated process for dehydrogenative amination of imidate. [a]

Entry	Potential/V vs. Fc/Fc ⁺	TBAI (mol%)	Yield [%]
1	0.5	10	54
2	0.3	10	47
3	0.7	10	71
4 ^[b]	0.7	10	82 (73)
5 ^[b]	0.7	-	n.d.
6 ^[b,c]	0.7	10	2

[a] The reaction was performed on a 0.5 mmol scale under constant potential (CP) conditions. Yields were determined by ¹H NMR spectroscopy with *m*-xylene as an internal standard. Yield of isolated product shown within parentheses. [b] With 1 equiv of pyridine. [c] Without irradiation.

✓ 4

0.7 V → Best Potential

✓ 5, 6
TBAI, irradiation → Essential

Substrate Scope

Scheme 2. Substrate scope of iodide-mediated dehydrogenative amination. The reactions were conducted on a 0.5 mmol scale. See the Supporting Information for details. All yields are those of the isolated products. [a] **2a** has also been produced under conditions with stoichiometric chemical oxidants: $PhI(OAc)_2/cat$. I_2 , $90\%_1^{[1]a]}$ $PhI(OAc)_2/I_3^-$, $93\%_1^{[1]og}$ mCPBA/cat. I_2 , $54\%_1^{[1]c]}$ [b] dr=1:1. [c] dr=1.8:1. [d] dr=1.2:1. [e] With 2,6-lutidine instead of pyridine as additive. TsOH=p-toluenesulfonic acid.

Proposed Mechanism

Scheme 3. Simplified mechanism for photo/electrochemical iodidemediated dehydrogenative C-H/N-H coupling.

Functional-Group Tolerance

Substrates

Scheme 4. CVs of iodide and representative substrates. Conditions: 5 mm substate in acetonitrile with KPF₆ (0.1 m) as supporting electrolyte, glassy carbon as working electrode (\approx 7.0 mm²), and a platinum wire counter electrode, scan rate = 100 mV s⁻¹.

- ✓ Potential $I^- \rightarrow I_3^- \rightarrow I_2 <$ Substrates
- → Functional-group **tolerance** is achieved

Short Summary

Figure 11. A) Hofmann–Löffler–Freytag amination of C(sp³)–H bonds under dPEC. B) Proposed mechanism. C) Example scope.

✓ Hofmann–Lçffler–Freytag(HLF) amination ofC(sp3)-H bonds under dPEC

✓ Applied potential

→ Regenerate iodine and remove protons from system

✓ Photoexcitation

→ Cleave N-I bond

✓ Advantage

- **= Low** anodic potentials
- → Mild condition, High selectivity

³⁸

Contents

1. Introduction

2. Representative Researches

- 1. Mechanistic Classification
- 2. Electrochemically Mediated PhotoRedox Catalysis (ePRC)
- 3. Decoupled PhotoElectroChemistry (dPEC)
- 4. Interfacial PhotoElectroChemistry (iPEC)
- 3. Summary

The Mechanism of iPEC

Figure 12. Schematic of a photoanode used for oxidation of organic compounds. RHE: relative Hydrogen electrode; E_{AP} : applied potential; E_F : Fermi level; CB: conduction band; VB: valence band.

Photoelectrode is coated in a **photoresponsive material** (typically, **semiconductor**) whose **band gap** corresponds to the energy of a **visible-light photon**

The Mechanism of Photoanode

E_F: Fermi level

E_{AP}: applied potential

CB: conduction band

VB:valance band

E_{AP} is used to improve charge carrier separation upon irradiation E_{AP} promotes an electron

from VB to CB

Electron transfer generate a hole that is used for reaction

The Example of iPEC

✓ iPEC C-H amination of electron-rich arenes with a α-Fe₂O₃ photoanode

Optimization

OMe	+ FX	Electrolyte (0.1 Solvent, 3 ml, 1 Haematite photoanode Pt cathode, undivi	0 h e (~1.2 cm²) ded cell	Me + N	ОМе
1 , 0.2 mmol	2 , <i>x</i> equiv.	E = 0.73 V versus Blue LEDs			3b
Entry	2 (x equiv.)	Electrolyte	Solvent	Yield (%) ^a	3a:3b
1	2.0	TBAPF ₆	CH₃CN	0	
2	2.0	TBAPF ₆	CH ₂ CICH ₂ CI	14	1:1
3	2.0	TBAPF ₆	HFIP/MeOH (4:1)	75	4:1
4	2.0	TBAPF ₆	CF ₃ COOH/MeOH (4:1)	0	
5	2.0	TBAPF ₆	HFIP	0	
6	2.0	TBAPF ₆	MeOH	0	
7	2.0	LiCIO ₄	HFIP/MeOH (4:1)	77	6:1
8	2.0	LiCIO ₄	HFIP/MeOH (3:1)	78	4:1
9	2.0	LiCIO ₄	HFIP/MeOH (5:1)	62	8:1
10	3.0	LiCIO ₄	HFIP/MeOH (4:1)	86	3:1
11 ^b	2.0	LiCIO ₄	HFIP/MeOH (4:1)	0	
12°	2.0	LiCIO	HFIP/MeOH (4:1)	0	
13 ^{b,d}	2.0	LiCIO ₄	HFIP/MeOH (4:1)	58	2:1
14 ^{b,e}	2.0	LiCIO ₄	HFIP/MeOH (4:1)	38	12:1

✓ 5, 6, 11, 12 HFIP, MeOH, light, electricity → All essencial

✓ 7

Most optimized

*Yield determined by gas chromatograp v. *Without light. *Without electricity. Applied potential, $E = 1.53 \,\mathrm{V}$ versus Fc/Fc^+ . *Glassy carbon (-1.2 cm²) was used as the anode; applied potential, $E = 1.33 \,\mathrm{V}$ versus Fc/Fc^+ .

Substrate Scope

- ✓ High ortho-selectivity
- ✓ 11, 16
 Substrates with high oxidative potentials give low yields
- ← The oxidation was inefficient
- ✓ 11Extend the reaction time≠ Achieve a high yield

Substrate Scope

Late-Stage Functionalization of Pharmaceuticals

Fig. 3 | Late-stage functionalization of pharmaceuticals. a, C-H amination of clofibrate. b, C-H amination of metaxalone. c, C-H amination of benzethonium chloride.

Proposed Mechanism

Fig. 5 | Mechanistic hypothesis. a, Proposed mechanism of C-N bond formation. b, Proposed hydrogen bonding among anisole, HFIP and pyrazole.

Short Summary

Figure 13. A) iPEC C—H amination of electron-rich arenes with a hematite photoanode. B) Proposed mechanism. C) Example scope.

- ✓ iPEC C-H amination of electron-rich arenes with a
 α-Fe₂O₃ photoanode
- ✓ High ortho-selectivity↑Hydrogen bonds

- ✓ a-Fe₂O₃ photoanode + Blue LEDs
- = Highly oxidizing

Summary of iPEC

✓ Advantages

- ✓ Leveraging the energy of visible light to offset the E_{AP}
- → Better selectivity and energy efficiency
- ✓ Not only a chromophore in solution
- → Substrates absorbing **no** visible light can be used

Disadvantages

- ✓ Energy benefits iPEC < ePRC
 </p>
- ← ePRC can access **very high** redox potentials

Contents

- 1. Introduction
- 2. Representative Researches
 - 1. Mechanistic Classification
 - 2. Electrochemically Mediated PhotoRedox Catalysis (ePRC)
 - 3. Decoupled PhotoElectroChemistry (dPEC)
 - 4. Interfacial PhotoElectroChemistry (iPEC)

3. Summary

Summary

Advantages

- ✓ Mild condition
- ✓ High selectivity
- ✓ Atom / Energy efficiency

- ✓ Large redox window
- ✓ Convenient energy-input tuning
- ✓ No oxidant / reductant

Highly Promising Strategy!!!

- ✓ Greenness
- ✓ Forming difficult chemical bonds
- ✓ More potent catalyst
- ✓ Meeting the specific reaction`s requirements

