Cleavable linkers in antibody drug conjugates

Literature seminar 2020/01/20 M1 Natsuki Konoue

contents

➢Introduction

- What is antibody drug conjugates?
- Clinically approved ADC
- Mechanism of action

Chemically cleavable linker

- Acid cleavable linkers
- Reducible disulfide
- Cleavage by exogenous stimuli
- Enzyme cleavable linkers

➢Summary

Introduction

Antibody-drug conjugate(ADC)

antibody

the selective delivery system developed against an antigen associated with a specific cancer cell type

chemical linker The molecular chain through which the payload is attached to the antibody

payload

the potent anticancer drug

Drug

Drug

- O high cytotoxicity
- O low production cost
- × low selectivity to cancer cell
- × rapid plasma clearance

- O high selectivity to cancer cell
- O long plasma half-lives
- × limited cytotoxicity

High cytotoxic and selective therapeutics with long plasma half-lives

Clinically approved antibody drug conjugates⁵

Adcetris(2011)

For relapsed or refractory Hodgkin lymphoma and systemic anaplastic large cell lymphoma (ALCL) ホジキンリンパ腫、ALK陽性未分化大細胞リンパ腫

Angew. Chem. Int. Ed. 2019, 58, 11206 - 11241

There are almost 100 ADCs in clinical trials

Mechanism of action

Fig. 2 (A) The traditional mechanism of action, involving endocytosis and intracellular payload release. (B) The non-internalising, extracellular mechanism of action.

ADC linkers can be classified as 'cleavable' or 'non-cleavable'

Non-cleavable linkers are mainly effective for the treatment of haematological cancers or tumors with high antigen expression

Cleavable linkers are generally preferred to non-cleavable linkers due to their range of applicability

There are 4 types of chemically cleavable linkers

- Acid cleavable
- Reducible disulfides
- Cleavable by exogenous stimuli
- Enzyme cleavable

Acid cleavable linkers aim to exploit the acidity of the Endosomes(pH 5.5-6.2) and lysosomes(pH 4.5-5.0), whilst maintaining stability in circulation at pH 7.4

This strategy resulted in clinical success in gemtuzumab ozogamicin(*Mylotarg*), inotuzumab ozogamicin(*Besponsa*)

The linker contains an acidsensitive *N*-acyl hydrazine linkage

Upon acid catalysis, hydrolyses to a ketone and a hydrazide-payload

Besponsa linker showed that hydrazone hydrolysis occurred in circulation at a rate of 1.5-2.0%/day

Bioconjugate Chem., 2002, 13, 47-58

Other hyrazone-containing linker

Phenylketone-derived hydrazine linker

Hydrolysed with $t_{1/2}$ = 2 days in isolated human and mouse plasma despite much higher stability in pH 7.4 buffer

The specific cause is unclear

The highly variable stability of hydrazones has prevented their utility

Fig. 3 The structure of a phenylketone-derived hydrazone linker.

Nat. Biotechnol., 2003, 21, 778-784

Acid cleavable linkers containing other functional groups Carbonate linkers with an alcohol-containing SN-38 payload

Introduction of a p-aminobenzyl(PAB)-spacer boosted the serum stability

Fig. 4 The structure of SN-38-bearing ADCs with an acid-cleavable PAB-carbonate linker.

Most linker technology has moved away from acid cleavable groups

The requirement for linkers to distinguish between pH 5.0 and pH 7.4 is difficult and development focuses on other approaches

J. Med. Chem., 2008, 51, 6916-6926

11

Disulfides are the most prominent class of chemically cleavable motifs found in ADC linkers

Disulfides are stable at physiological pH but are sensitive to nucleophilic attack from thiols

Fig. 5 The reduction of disulfide linkers, mediated by the deprotonated thiolate.

In contrast to the limited reductive power of blood plasma, the cytosol contains high levels of glutathione(GSH) (1-10 mM)

The oxidative stress associated with tumors leads to elevated GSH levels

Sterically hindered disulfides

structures of linkers in antibody-maytasinoid conjugates(AMCs)

The rate of reduction of disulfide-linked AMCs by DTT was measured at 37 C, pH 6.5, using an HPLC assay to follow the release of maytansinoid

huC242-SMCC-DM1 : huC242-SPDB-DM4 : huC242-SPDP-DM4 : huC242-SPDB-DM3 : huC242-SPPDM1 : ●

Bioconjugate Chem. 2011, 22, 717–727

in vivo efficacy of AMCs

Days (post inoculation)

SPP-DM1 linker was most active

Bioconjugate Chem. 2011, 22, 717–727

a second set of efficacy studies

A: COLO205 model B: HT29 model Using ADC linked with huC242 (anti-CanAg) antibody

In this case, SPDP-DM4 was most active

This result arises not from the stability profile but the increased activity of the DM4 metabolite

Bioconjugate Chem. 2011, 22, 717–727

Direct disulfide-bonding between engineered ¹⁶ cys residues

Without excessive steric protection around the payloads, excellent *in vivo* mouse plasma stability

The stability was highly site-dependent

The sterically protected DM3 payload gave the predicted rise in stability over DM1

Fig. 9 (A) Metabolism of a linkerless, cysteine-linked maytansinoid ADC (B) *in vivo* stability of the conjugates in healthy mice dosed at 3 mg kg⁻¹ (C) antitumour activity of the conjugates in a CD22-xenograft model, dosed at 3 mg kg⁻¹. K149C and V205C refer to the hindered and unhindered attachment sites respectively. Reproduced from ref. 17 with permission from the Royal Society of Chemistry.

Chem. Sci., 2017, 8, 366–370

Traceless disulfide-carbamate technology

- Novel self-immolating carbamate linker
- This technology allows the benefits of disulfide likers to be applied to a wider range of potential payloads

Increasing stability to reduction

α-methyl group increased the rate of self-immolation with increasing stability to reduction

Fig. 10 Disulfide reduction and immolation of a disulfide-carbamate, releasing amine-linked drugs.

Mol. Cancer Ther., 2017; 16, 871-878

Cleavage by exogenous stimuli

Advantages of extracellular drug release

- Avoidance of any disparity in linker cleavage rates caused by variable biology across patients
- The ADCs can be effective when extracellular concentrations of endogenous triggers are insufficient for payload release

Thioether-containing linker

Fig. 11 Mechanism of action of a Pd⁰-labile ADC. Reproduced with permission from ref. 26 with permission from the Royal Society of Chemistry.

Under exposure to Pd⁰, this liker releases an amine-linked payload

In the presence of the [Pd(COD)Cl₂], the ADC was potent

The concentration of Pd required fro efficient decaging was non-toxic in kidney cells, but it is unlikely to be tolerated *in vivo*

Trans-cycloocttene linker

Diels-Alder reaction with an externally administered tetrazine Releasing an amine-containing payload *in vivo*

Fig. 12 The mechanism of action of a *trans*-cyclooctene-containing ADC, cleaved by a IEDDA reaction. Reproduced from ref. 28, used under license CC BY.

The tetrazines with fast kinetic profiles were unsuitable for use on their own, due to their rapid plasma clearance rate($t_{1/2} \approx 1 \text{ min.}$)

partially proved this problem by employing a pegylated 3-methyl-6trimethylenetetrazine linked to a chelated lutetium(III) species

Instability of the trans-cycloocten-Dox conjugate to alkene isomerism was observed, but this adverse effect on the therapeutic window was not severe

Nat. Commun., 2018, 9, 1484

- Dipeptide-containing linkers
- Glycosidase-cleavable linkers
- Phosphatase-cleavable linkers

Dipeptide-containing linkers are present in the majority of ADCs

Previously known lysosome cleavable tetrapeptides Gly-Phe-Leu-Gly and Ala-Leu-Ala-Leu were unsuitable for prodrug or ADC applications due to their slow release kinetics, hydrophobicity and complexity

The carboxydipeptidase activity of cathepsin B enables to cleave dipeptide linkers

General trend

- A hydrophilic residue at P_1 is required and hydrolysis rates increase with basicity
- Citrulline(Cit) is isoelectronic with Arg, and was preferred to Arg due to synthetic ease
- The hydrophobic residues Phe, Val and Ala at P₂ enable cleavage by cathepsin B with plasma stability

Due to the steric bulk of the Dox payload, a spacer unit was required for enzymatic activity

A *p*-aminobenzyl carbamate(PABC) linkage was used as a self-immolative spacer

Dipeptide-containing ADCs

More selective and potent than acid-cleavable hydrazonecontaining ADC

Phe-Lys-PABC and **Val-Cit-PABC** containing linkers were successfully applied to ADCs

When incubated in isolated human plasma, they exhibited long half-lives, but **in mouse plasma the conjugates were less stable**

The enzyme responsible for the instability was not cathepsin but carboxyl esterase 1C(Ces1C)

Improving the mouse plasma stability of Val-Cit

Table 1 The stability of modified Val-Cit-PABC-containing ADCs in rodent plasma. The shaded entry signifies the linker used in an ADC that outperformed the unmodified variant in a mouse xenograft model

	% Stability after 4.5 days	
R group	Mouse plasma	Rat plasma
YN J	0	75
\succ^{H}	5	94
× ^N √	65	96
√№т_он	84	97

The addition of hydrophilic P₃ residues at the N-terminus increased the mouse plasma stability of the ADC, without negatively affecting cathepsin B-cleavage

Tripeptidic linkers

Tripeptidic linkers with more hydrophilicity at P₃ to eliminate cleavage by Ces1C and provide improved aqueous solubility

 P_3 = Ser gave only slightly increased stability and P_3 = Lys reduced stability over the native Val-Cit, the use of acidic Glu and Asp residues dramatically increased linker stability, with Glu slightly outperforming Asp

Fig. 14 The *in vitro* mouse plasma stability and *in vivo* antitumour activities of Glu-Val-Cit (green) and Val-Cit (blue) containing ADCs, stability data for the Ser-Val-Cit ADC (orange) is also included. Reproduced from ref. 33, used under license CC BY.

Approach to specifically target cathepsin B

Removal of the $P_1 - P_2$ amide bond, as well as replacing the P_2 residue, eventually settling with the cyclobutane-1,1-dicarboxamide (cBu) moiety

The cBu-Cit moiety is more selective towards cathepsin B than Val-Cit and does not require other proteases in order to effectively release the payload

Fig. 15The structure of the cBu-Cit-PABC-containing ADCs wheredrug = MMAE or PBD-dimer.J. Med. Chem., 2018, 61, 989-1000.

The Val-Ala motif

the Val-Ala moiety has also emerged as an effective proteasecleavable group

In the case of Val-Ala, 7.4 drugs per mAb were loaded without significant aggregation(>10%)

Val-Cit-containing linker could not reach a DAR >4 because of excessive aggregation and precipitation

Fig. 16 The structure of rovalpituzumab tesirine.

β-Glucuronidase-cleavable linkers

 β -Glucuronidases are hydrolytic lysosomal enzymes in the glycosidase class that catalyse the breakdown of β -glucuronic acid residues in polysaccharides

Attachment to the antibody was achieved by substitution of an amide bond ortho- to the enzyme-cleavable group

Crucially, the conjugates were highly stable in isolated rat plasma, with an extrapolated half-life of 81 days, far superior to the dipeptidic linkers

Fig. 18 The structure and release mechanism of β -glucuronic acidcontaining ADCs.

Bioconjugate Chem. 2009, 20, 1242–1250

Novel linker releasing alkyl alcohol-linked payloads

a methylene-alkoxy group was added to the PAB spacer to allow the release of alkohols

N, *N*-dimethyl ethyl group was stable at pH 7.4 and efficiently eliminated the payload upon enzyme hydrolysis

Fig. 19 The structure and release mechanism of a methylene-alkoxycontaining β -glucuronidase-cleavable ADC. 30

β-Galactosidase-cleavable linkers

The enzyme is analogous to β -glucuronidase in its hydrolytic activity, but instead hydrolyses β -galactoside.

The authors found that this type of linker, when used with trastuzumab and MMAE, was more potent than the Val-Cit-PABC analogue

Fig. 20 The structure and release mechanism of an β -galactoside-containing ADC.

Eur. J. Med. 2017, 142, 376-382

Lysosomal acid pyrophosphatase and acid phosphatase are enzymes that hydrolyse pyrophosphates and terminal monophosphates respectively to their parent alcohols in the lysosome

Targeting these enzymes for drug release offers two distinct opportunities

- the substrates are naturally highly hydrophilic
- alkyl alcohol payloads can be released

Dipeptide-phosphate-containing ADC

Upon lysosomal proteolysis of the Val-Cit group, the PAB unit was able to eliminate a terminal monophosphate

The terminal phosphate was hydrolysed by acid phosphatase upon elimination, releasing an alcohol payload

Plasma stability studies were limited to only six hours, insufficient for the lifetimes associated with ADCs

Fig. 21 The structure of cleavage mechanism of a dipeptide-phosphatecontaining ADC linker.

Bioconjugate Chem. 2016, 27, 2081–2088

Pyrophophate-containing ADCs

The linkers were hydrolysed in lysosomal extract media, first releasing the monophosphateappendaged alcohol payload, then the unfunctionalised glucocorticoid drug

Slow drug release was improved by introducing an acetal spacer

Fig. 22 The structure of cleavage mechanism of pyrophosphate-containing ADCs bearing glucocorticoid payloads. J. Am. Chem. Soc., 2016, 138, 1430-1445

Summary

- Suitable linker technology at the payload attachment site is required for safe and efficacious ADCs
- Cleavable linkers are the preferred choice in the treatment of cancer due to the importance of bystander killing and payload cytotoxicity
- Acid cleavable ADC linkers were initially promising but stability requirements has reduced their value
- The vast majority of current ADCs are disulfide or dipeptide technologies due to their ability to distinguish between plasma and target cell conditions

- Non-dipeptide based enzyme-cleavable linkers have not yet been clinically validated despite their encouraging preclinical results
- Glycosidase- and phosphatase-cleavable linkers have exhibited excellent solubility and stability

Appendix

Ozogamicin

N-acetyl calicheamicin γ_1^{I} derivative DNA cleavage activity

Vedotin

monometyl auristatin E ; MMAE microtubule inhibitor

Emtansine

maytansinoid derivative Microtubule inhibitor

SN-38

active metabolite of irinotecan DNA topoisomerase I inhibitor

PBD dimer

DNA binding activity

Doxorubicin

anthracycline antibiotics DNA intercalational compound

Dexamethasone, Fluticasone

Steroidal Anti-Inflammatory Drugs(SAIDs)

Intracellular disulfide metabolism

Fig. 8 Intracellular metabolism of a CanAg-DM4 ADC.

Bioconjugate Chem. 2010, 21, 84–92

In the case of DM4 payload, rapid S-methylation occurs to form the potent thioether derivative by an intracellular methyltransferase

DM4

DM1 payload is not significantly S-methylated after 8 hours

Ces1 is the enzyme responsible for the instability of Val-Cit linkers

Understanding the role of cathepsin B

Cathepsin S is the most active enzyme in the family to a Val-Cit containing ADC

