Deconstructive Functionalization via C(sp³)-C(sp³) Bond Cleavage

2021/09/30 Literature Seminar Mina Yamane (M2)

Table of Contents

- 1. Introduction
- 2. Deconstructive Functionalization of Cyclic Alcohols
- 3. Deconstructive Functionalization of Cyclic Amines
- 4. Scaffold Hopping
- 5. Summary

Table of Contents

- 1. Introduction
- 2. Deconstructive Functionalization of Cyclic Alcohols
- Deconstructive Functionalization of Cyclic Amines
- 4. Scaffold Hopping
- 5. Summary

Introduction

T. Fujita, et al. Angew. Chem. Int. Ed. 2021, just accepted.

Scheme 1. Strategies for the selective functionalization of inert sp^3 carbon centers. DG = directing group.

"Fast/efficient exploration of new chemical space for drug discovery"

S. Morcillo, et al. Angew. Chem. Int. Ed. 2019, 58, 14044.

1

A Brief Introduction to C-C Bond Cleavage

- C-C bond cleavage can be encountered in...
- Steam cracking process of crude oil at high temperature/pressure in the petroleum oil industry
- ◆ Classical reactions (e.g. sigmatropic rearrangements, Beckmann rearrangement, Baeyer-Villiger oxidation, retro-aldol/allylation, etc.)
- ◆ Strategic approaches for total syntheses

R. Woodward, et al. J. Am. Chem. Soc. **1944**, 66, 849. (scheme from: R. Sarpong, et al. Angew. Chem. Int. Ed. **2020**, 59, 18898.)

⇒ Remaining Challenge: Activation of *unbiased* C(sp³)-C(sp³) bonds in a general/efficient manner

Concepts of C(sp³)-C(sp³) Fragmentation

Pioneering Approaches by Eschenmoser (1950s) --- Grob

Transition Metal Catalyzed Approaches (over the last 3 decades)

Another Recent Approach

- J. Williams, Angew. Chem. Int. Ed. 2013, 52, 11222.
- S. Morcillo, et al. Angew. Chem. Int. Ed. 2019, 58, 14044.

C(sp³)-C(sp³) Bond Activation

Compared to other bonds:

- ✗ Less polarized
- ✗ Less favorable orbital directionality for interactions w/ transition metals
- **✗** Substituents on both ends sterically prevent metal approach

Figure 2. Comparison of the favorable orbital interactions between (a) C=C, (b) C-H, and (c) C-C bonds and transition metals. Symmetry-allowed orbital interactions are indicated in blue and white.

Concepts of C(sp³)-C(sp³) Fragmentation

Pioneering Approaches by Eschenmoser (1950s) → → Grob

Transition Metal Catalyzed Approaches (over the last 3 decades)

Another Recent Approach

- J. Williams, Angew. Chem. Int. Ed. 2013, 52, 11222.
- S. Morcillo, et al. Angew. Chem. Int. Ed. 2019, 58, 14044.

Point to Note

Scheme 1. C–C Cleavage of Small Rings by (A) C–C Activation and (B) β -Carbon Elimination

(A)

Most common tactic: uses strain-release as crucial driving force **This seminar: covers activation of** *unstrained compounds*

Table of Contents

- Introduction
- 2. Deconstructive Functionalization of Cyclic Alcohols
- Deconstructive Functionalization of Cyclic Amines
- 4. Scaffold Hopping
- 5. Summary

Deconstructive Functionalization of Cyclic Alcohols

Strategy: Prefunctionalization of alcohols

 \Rightarrow BDE(O-H) \approx 105 kcal/mol >> BDE(O-NO) \approx 37 kcal/mol

Scheme 3. Deconstructive functionalization by homolysis of O-NO bonds.

✓ Tandem β-fragmentation/
iodolactonization of steroidal alcohols

E. Suarez, et al. J. Org. 1994, 59, 4393.

Photocatalyzed Approaches

Photoredox catalyst × Bronsted Base × Thiol H-donor

Figure 1. Catalytic ring-opening of cyclic alcohols via PCET.

- ✓ 1st photocatalyzed activation of unstrained alcohols
- ✓ Selective cleavage of distal C-C bonds via generation of "spatially removed" alkoxy radicals

Proposed Catalytic Cycle

Photoredox catalyst × Bronsted Base × Thiol H-donor

Figure 2. Proposed catalytic cycle.

Ring opening:
generation of aryl ketone and distal alkyl radical

Screening of Reaction Conditions

[Ir(dFCF₃ppy)₂-(5,5'-dCF₃bpy)]PF₆

Table 1. Reaction Optimization^a

entry	photocatalyst	base	yield (%)
1	$[Ir(dF(CF_3)ppy)_2(dtbbpy)](PF_6)$ (A)	collidine	0
2	$[Ir(dF(CF_3)ppy)_2(bpy)](PF_6)$ (B) collidine		9
3	[Ir(dF(CF3)ppy)2(5,5'd(CF3)bpy)](PF6) (C)	collidine	79
4	[Ir(dF(CF3)ppy)2(5,5'd(CF3)bpy)](PF6) (C)	pyridine	6
5	[Ir(dF(CF3)ppy)2(5,5'd(CF3)bpy)](PF6) (C)	TBA ⁺ (PhO) ₂ POO ⁻	4
6	[Ir(dF(CF3)ppy)2(5,5'd(CF3)bpy)](PF6) (C)	TBA+ CF ₃ COO-	48
7	[Ir(dF(CF3)ppy)2(5,5'd(CF3)bpy)](PF6) (C)	TBA+ PhCOO-	8
8	[Ir(dF(CF3)ppy)2(5,5'd(CF3)bpy)](PF6) (C)	collidine (2 equiv)	83
9	$[Ir(dF(CF_3)ppy)_2(5,5'd(CF_3)bpy)](PF_6)$ (C) collidine (3 equiv)		91

[&]quot;Optimization reactions were performed on a 0.05 mmol scale. Yields determined by ¹H NMR analysis of the crude reaction mixtures. Structures and potential data for all photocatalysts are included in the SI.

Substrate Scope

[&]quot;Reactions run on 1.0 mmol scale. Reported yields are for isolated and purified material and are the average of two experiments. Diastereomeric ratios were determined by ¹H NMR or GC analysis of the crude reaction mixtures. ^b0.5 mmol scale. ^cFor experimental details of halogenations, see SI.

Mechanistic Insights

Q. Does the charge transfer between arene radical cation and O-H bond proceed via stepwise PT/ET or concerted PCET?

ASSUMPTION: if $d\rightarrow\infty$, then p $K_a\rightarrow\sim40$ (value for isolated tert-alkanol in MeCN)

Figure 3. Distal C-C bonds cleaved via long-range PCET.

Deprotonation by collidine (p K_a =15.0 in MeCN) \Rightarrow $\Delta G \approx +34$ kcal/mol

VS

Charge recombination of Ar radical cation w/ reduced photocatalyst $\Rightarrow \Delta G \approx -53$ kcal/mol

Table of Contents

- 1. Introduction
- 2. Deconstructive Functionalization of Cyclic Alcohols
- 3. Deconstructive Functionalization of Cyclic Amines
- 4. Scaffold Hopping
- 5. Summary

Deconstructive Functionalization of Cyclic Amines

Bioactive Molecules Containing N-heterocycles

Deconstructive Fluorination

Challenges:

- 1) Competing over-oxidation to amides (instead of hemiaminals)
- 2) Limited examples of ring-opening fluorination of unstrained cycloalkanols

Optimization of Reaction Conditions

entry	variation from the standard conditions	yield (%)*	
1	none	81†	
2	AgNO ₃ instead of AgBF ₄	42	→ 2 nd best Ag source
3	no [Ag]	0	
4	NFSI instead of Selectfluor	0	
5	MeCN instead of acetone	51	
6	AgBF ₄ (50 mol%)	52	→ substoichiometric Ag,
*Yield b	ov ¹ H NMB integration using Ph _o CH as an i	nternal stand	ard modest yield

*Yield by ¹H NMR integration using Ph₃CH as an internal standard.

† Isolated yield.

- ✓ cheap / commercially available AgBF₄
- ✓ mild reaction conditions

Deconstructive Fluorination: Substrate Scope

Fig. 2. Deconstructive fluorination: cyclic amine scope. Only isolated yields are shown. Reaction conditions: 1 (0.1 mmol), AgBF₄ (4 equivalents), Selectfluor (4 equivalents), acetone:H₂O (1:9), 40°C, 1 hour. *Deformylated product obtained, dr. diastereomeric ratio.

Decarboxylative Fluorination: Previous Studies

Figure 1. Proposed Mechanism of Silver-Catalyzed Decarboxylative Fluorination.

*Detailed mechanism is still unclear...??

Proposed Mechanism: This Study

X An alternative pathway (reversed order of events) cannot be ruled out

NMR EXPERIMENTS:

- 1) Consumption of Selectfluor was observed only under the presence of cyclic amine (according to ¹⁹F NMR)
- 2) Broadening of 1H NMR spectrum ⇒ formation of paramagnetic Ag(II)
- 3) Downfield shifts of cyclic amine 1a upon addition of AgBF₄
 - ⇒ binding of Ag(I) to amide moiety

Possible Mechanisms for Fluorination

Deconstructive Fluorination: Substrate Scope

Fig. 2. Deconstructive fluorination: cyclic amine scope. Only isolated yields are shown. Reaction conditions: **1** (0.1 mmol), AgBF₄ (4 equivalents), Selectfluor (4 equivalents), acetone:H₂O (1:9), 40°C, 1 hour. *Deformylated product obtained, dr, diastereomeric ratio.

Possible Mechanisms for Fluorination (continued)

Red → in favor of path A Blue → in favor of path B

Start from aldehyde:

⇒ Pro. Accessible by path A only

Prolonged rxn time:

⇒ Deformylated pros. were major

No equilibrium with hemiaminal:

⇒ Fluorination proceeded from aldehyde

Start from carboxylic acid:

⇒ Decarboxylation proceeded

Fig. 4. Mechanistic studies. (A) Proposed mechanism for 1a oxidation. (B) Possible mechanisms for fluorination of B. (C) Mechanistic studies. Reaction conditions: (a) starting material (0.1 mmol), AgBF₄ (4 equivalents), Selectflu (0.5 mmol), AgBF₄ (4 equivalents)

Neither path could be ruled out...

16 hours. (D) Mechanistically driven gern-nuormation of enamine 10. Reaction co (0.1 mmol), AgBF₄ (0.25 equivalents), Selectfluor (4 equivalents), acetone:H₂O (1:1), room temperature, 15 hours. Phth, phthaloyl.

2018, *361*, 171.

Deconstructive Halogenation of Cyclic Amines

Bioactive Molecules Containing N-heterocycles

R. Sarpong, et al. Nature **2018**, 564, 244. ²⁷

Proposed Mechanism for Ag-mediated Deconstructive Halogenation

Optimization of Reaction Conditions

*Yield by ¹H NMR integration using Ph₃CH as an internal standard.

†Isolated yield

X Screening was conducted on Ag salts, halogenating reagents, and solvent combinations (see Science, 2018).

- **✓** Electrophile is independent of initial redox cycle
- ✓ Can be performed w/out strict exclusion of air
- ✓ Choice of halogenating reagent leads to divergence of products

Deconstructive Halogenation: Substrate Scope

(major)

R. Sarpong, et al. Nature 2018, 564, 244.

Application of Deconstructive Halogenation

Fig. 3 | Applications of deconstructive halogenation. a, Skeletal remodelling of cyclic amines. b, Dehomologation of cyclic amines. a Yields in bracket represent the average yield per step.

*lower yield due to imide bp from halogenating reagent

Late-Stage Diversification of L-Proline-Containing Tripeptide

Late-Stage Diversification of Other *n*-peptides

Fig. 4 | Deconstructive chlorination of l-proline-containing peptides. a, Deconstructive diversification of tripeptide 21. b, The tolerance for oxidizable amino acid residues. c, Deconstructive chlorination

of L-phenylalanine-containing tripeptide **30**. **d**, Deconstructive fluorination of tripeptide **21**. r.s.m., recovered starting material; Tf, trifluoromethanesulfonyl.

Table of Contents

- 1. Introduction
- 2. Deconstructive Functionalization of Cyclic Alcohols
- 3. Deconstructive Functionalization of Cyclic Amines
- 4. Scaffold Hopping
- 5. Summary

Scaffold Hopping (omake)

... "scaffold-hopping", that is, identification of isofunctional molecular structures with significantly different molecular backbones...

G. Schneider, et al. Angew. Chem. Int. Ed. 1999, 38, 19, 2894.

Category	Definition	Pros and cons	Software [Refs]
1 ^D	Heterocycle replacement	Pros: (1) High success rate (2) Immediate design Cons: (1) IP position (2) Limited changes in properties	MORPH [45] and Recore [48]
2 °	CI C	Pros: (1) Improve binding (2) Improve stability Cons: (1) Reduce solubility (2) Flatten molecule (3) Synthetic feasibility	CSD [67]
3°	HA HANGE	Pros: Ready templates from bioactive peptides or protein–protein interactions Cons: Metabolic stability is a concern, especially for pseudopeptides	Recore [48], CAVEAT [87] and pharmacophore modeling tool from CCG [100], Accelrys [101] and Schrodinger [102]
	Pseudopeptide peptidomimetic		
4 °		Pros: Significantly different scaffold, implying novel properties Cons: Lower success rate	CSD [67], ROCS [108] and SHOP [112,124]
	Topology-based hopping		

Table of Contents

- 1. Introduction
- 2. Deconstructive Functionalization of Cyclic Alcohols
- 3. Deconstructive Functionalization of Cyclic Amines
- 4. Scaffold Hopping
- 5. Summary

Summary

- ◆ Deconstructive functionalization of C(sp³)-C(sp³) provides access to unprecedented structures
- ◆ And seems to be a good strategy for "scaffold hopping"
- ◆ Leading to efficient exploration of new chemical space for drug discovery...!

Thank you for your attention.

Appendix

General Strategies for Inert C-C Bond Cleavages

a) β -carbon elimination

$$C \longrightarrow [M^n] \longrightarrow C + X = C$$
 X
 $[M^n]$

b) oxidative addition

$$C-C + [M^n] \longrightarrow C-[M^{n+2}]-C$$

c) retro-allylation

$$X \longrightarrow [M^n] C + X = C$$

d) ring strain-driven bond cleavage

$$C \xrightarrow{R} X \xrightarrow{[M^n]} C \xrightarrow{X} E$$

e) radical fragmentations

$$C \xrightarrow{R} X$$
 $C \xrightarrow{R} X$

X = O, NR

C-C vs C-H Bonds

β -carbon elimination vs. β -hydride elimination

Figure 3. Competition between activation of adjacent C–C and C–H bonds in the β -position.

 β -hydride elimination > β -carbon elimination

 \Rightarrow selective activation of a C-C bond within a substrate bearing β-hydrogen atoms (i.e., 1° and 2° alcohols) is still a challenge

 $BDE(C-H) \approx 100-110 \text{ kcal/mol} > BDE(C-C) \approx 90-105 \text{ kcal/mol}$

⇒ C-H bond is thermodynamically more stable than a C-C bond

Heterolytic C-C Bond Cleavages

Scheme 18. The original C–C fragmentation mechanistic framework by Eschenmoser (1952).^[1]

Scheme 19. Grob's 1,4-eliminations and diene synthesis (1955).[71]

J. Williams, *Angew. Chem. Int. Ed.* **2013**, *52*, 11222.

Stern-Volmer Studies

Constant [collidine], varied alcohol substrate [SM]

Figure S1. Stern-Volmer plot of [Ir(dF(CF₃)ppy)₂(5,5'd(CF₃)bpy)](PF₆) (244 μM) with varied [SM] in the presence of a constant concentration of collidine (7.22 mM) in CH₂Cl₂ at 23 °C.

Constant [SM], varied [collidine]

Figure S2. Stern-Volmer plot of [Ir(dF(CF₃)ppy)₂(5,5'd(CF₃)bpy)](PF₆) (244 μM) with varied [collidine] in the presence of a constant concentration of SM (15.0 mM) in CH₂Cl₂ at 23 °C.

1st order dependence on alcohol conc. 0 order dependence on collidine conc.

⇒ Direct Ar oxidation is suggested, rather than O-H PCET

Mechanistic Insights II

Purpose: Examine the relationship between effective BDFEs and reaction outcomes.

Figure 4. Effective BDFE correlations with reactivity.

Forecast the feasibility of PCET process.

BDFE \geq O-H BDFE \approx 102 kcal/mol \Rightarrow rxn proceeded BDFE < \sim 98 kcal/mol \Rightarrow rxn did NOT proceed

J. Mayer, et al. Chem. Rev. **2010**, 110, 6961. R. Knowles, et al. J. Am. Chem. Soc. **2016**, 138, 10794.

PCET and BDFE

Scheme 4. Thermochemical Square Scheme for a PCET Reagent

The capacity of any given oxidant/base pair to function as a formal H acceptor can be quantified as an effective bond strength (BDFE).

$$BDFE_{sol}(X-H) = 1.37pK_a + 23.06E^{\circ} + C_{G,sol}$$

Table 1. Summary of Constants C_G and C_H in Common Solvents^a

solvent	$C_{ m G}$	$T(\Delta S^{\circ})_{\text{solv}}^{b}$	C_{H}	electrochemical reference
acetonitrile (54.9	4.62	59.4	Cp ₂ Fe ^{+/0}
DMSO	71.1	4.60	75.7	$Cp_2Fe^{+/0}$ $Cp_2Fe^{+/0}$
DMF	69.7	4.56	74.3	Cp ₂ Fe ^{+/0}
methanol	65.3	3.81	69.1	Cp ₂ Fe ^{+/0}
water	57.6	-1.80	55.8	normal hydroger

^a Values in kcal mol⁻¹ at 298 K from references.^{39,51} ^b $T(\Delta S^{\circ})_{solv} = T(S^{\circ}(H^{\bullet})_{g} + \Delta S_{solvation}^{\circ}(H_{2})_{solv}).$

Ag Catalyzed Decarboxylative Chlorination

Figure 2. Proposed mechanism for Ag(I)-catalyzed decarboxylative chlorination.

Oxazine Formation via Autocyclization

R. Sarpong, et al. Nature 2018, 564, 244.

E. Prabharakan, et al. J. Org. Chem 2011, 76, 680.

Oxidation with Peroxydisulfate Ion

*1st step: unimolecular homolytic scission of peroxydisulfate ion

$$SO_4 \cdot - + CH_3CH_2OH \xrightarrow{k_{2a}} HSO_4 - + CH_3\dot{C}HOH$$

 $SO_4 \cdot - + CH_3CHO \longrightarrow HSO_4 - + CH_3\dot{C}O$

$$\begin{array}{c} \mathrm{CH_3\dot{C}HOH} + \mathrm{S_2O_8^{2-}} \xrightarrow{k_{3\mathrm{R}}} \mathrm{CH_3CHO} + \mathrm{HSO_4^-} + \mathrm{SO_4^-} - \\ \\ \mathrm{2CH_3\dot{C}HOH} \xrightarrow{k_{4\mathrm{A}}} \mathrm{CH_3CHO} + \mathrm{CH_3CH_2OH} \\ \\ \mathrm{H_2O} + \mathrm{CH_3CHO} \Longrightarrow \mathrm{CH_3CH(OH)_2} \quad \text{rapid hydration} \end{array}$$

$$SO_4 \cdot - + CH_3CH(OH)_2 \xrightarrow{k_{2b}} HSO_4 - + CH_3\dot{C}(OH)_2$$
 $CH_3\dot{C}(OH)_2 + S_2O_8^2 - \xrightarrow{k_{3b}} CH_3CO_2H + HSO_4 - + SO_4 \cdot -$
 $CH_3\dot{C}(OH)_2 + CH_3\dot{C}HOH \xrightarrow{k_{4b}} termination products$