Computational chemistry-based improvement of bioconjugation reactions

2022/12/22

Literature seminar

M2 Habazaki

Contents

♦Introduction

- **♦** Main
 - > Historical example: Bioorthogonal Cycloaddition
 - Mutual orthogonality & Motif expansion
 - Reactivity / stability trade-off
 - > Recent example: Cysteine Bioconjugation
 - Reactivity
 - Modularity
- **♦**Summary & Perspective

Features of Bioconjugations

Bioconjugations

- The reaction of two molecules and a crosslinking agent that covalently links the components together.
- At least one of the molecules is of biological origin or is a fragment or derivative of a biomolecule.
- Its use is directed toward biological or life science applications.
 - Assay and Quantification
 - Detection, Tracking, and Imaging
 - Purification, Capture, and Scavenging

- Therapeutics and In Vivo Diagnostics
- Vaccines and Immune Modulation

Bioorthogonal ligations

- Unnatural functional group
- High site specificity
- Within the complex milieu of a cell or a cell lysate

Chemoselective modifications

- Natural functional group (mainly amino acid)
- Immediate accessibility without the need for more specialist techniques

Requirements of Bioconjugations

Fundamental requirements for bioconjugation reactions

- Mutual reactivity in a physiological environment (<37 °C, pH 6-8, aqueous solvent)
- Rapid reaction
- Near total conversion to generate homogenous constructs
- High stability of reagents and adducts
- High chemoselectivity
- Innocuous (or no) byproducts
- Not to disrupt biomoleculars' architecture and/or function

Requirements for more effective bioconjugation tools

- Mutual orthogonality (a)
- Modularity (b)
- Metabolic introduction of a unique functional group

(a) Mutual orthogonality

(b) Modularity

Importance of Mechanistic Elucidation and Improvement of Bioconjugations

Challenging points

• The prerequisites critically restrict the scope of chemical reactions that can be performed in a biological context.

Key point in development

An in-depth understanding of mechanisms and structural effects is essential for accessing new and improved versions of bioconjugation chemistry.

Mechanistic principles

Structure—reactivity trends

One Powerful Strategy (Today's Topic)

Computational Mechanistic Analysis using DFT Calculation to Improve Bioconjugation Reactions

Contents

♦Introduction

♦Main

- > Historical example: Bioorthogonal Cycloaddition
 - Mutual orthogonality & Motif expansion
 - Reactivity / stability trade-off
- > Recent example: Chemoselective Cysteine Bioconjugation
 - Reactivity
 - Modularity
- Summary & Perspective

Contents

♦Introduction

- **♦**Main
 - > Historical example: Bioorthogonal Cycloaddition
 - Mutual orthogonality & Motif expansion
 - Reactivity / stability trade-off
 - > Recent example: Chemoselective Cysteine Bioconjugation
 - Reactivity
 - Modularity
- **♦**Summary & Perspective

Features of Bioorthogonal Cycloadditions

Bioorthogonal Cycloadditions

- The most studied bioorthogonal reactions
- Fast reactions, Good regioselectivity, Well-established chemistry
- The contributions of computations to this field began in the past decade and have matured.

Classical click and bioorthogonal reactions

Cu-catalysed azide-alkyne cycloaddition (CuAAC) (2002) metal-mediated

$$R_1-N_3 + = R_2 \xrightarrow{Cu^l} \xrightarrow{N_1} R_2$$

Strain-promoted azide-alkyne cycloadditions (SPAAC) (2004) metal-free

$$R_1-N_3$$
 + N_1 N_2

Inverse electron-demand Diels-Alder cycloadditions (IEDDA, Tetrazine ligation)

(2008) metal-free

Computational Chemistry in Cycloaddition Reactions

Distortion/Interaction (D/I) model

- A relatively new tool for chemists to understand reactivities and selectivities (By Prof. Morokuma → Prof. Houk & Prof. Bickelhaupt)
- $\Delta E_{\rm act}$ is decomposed into two contributions:

 1 The distortion energy associated with the structural distortion ($\Delta E_{\rm dist}$)
 2 The interaction between these increasingly distorted reactants ($\Delta E_{\rm int}$)
- $\times \Delta E$ (Electronic energy) & ΔG (Gibbs free energy)
 - **E**: The energy of the electrons in atoms, ions, or molecules, which are bound by the electric field of the nucleus
 - $G = H TS = (U + pV) TS = (E + E_{trans} + E_{rot} + E_{viv}) + pV TS$
 - Arrhenius equation: $k = A \exp(-\Delta G^{\ddagger} / k_B T)$

 $E \rightarrow$ for analysis of reactivity trend, $G \rightarrow$ for prediction of reaction rate

Distortion/Interaction (D/I) Model

Example in S_N2 reactions

 X^- = Nucleophile

= Leaving group

- a. A better nucleophile

 - → A stronger Lewis basicity
 → Lowering the S_N2 barrier by enhancing the stabilizing interaction
- b. A poorer leaving group
 - → A higher energy penalty to lengthen a
 - stronger C-Y bond \rightarrow Raising the S_N^2 barrier because of **a** more destabilizing distortion curve

Elucidation of Mutual Orthogonality in Bioorthogonal Cycloadditions

The mutual orthogonality of azide-DBCO and tetrazine-TCO cycloadditions

$$R^{4}$$
 R^{5}
 R^{5}
 R^{4}
 R^{6}
 R^{6}

Question

Why do their selectivities differ dramatically?

DFT-calculation approach

- Point out the factors that control the reactivity patterns
- Develop a set of design principles for new orthogonal cycloadditions
- Predict that two new bioorthogonal reagents

Elucidation of Mutual Orthogonality in Bioorthogonal Cycloadditions

- Trans-cyclooctene (TCO):

 The interaction energy of TS1-Tz is much larger than that of TS1-Azide.
- Dibenzocyclooctyne (DBCO):
 The extremely sluggish kinetics of the DBCO-tetrazine cycloaddition is mainly due to very high distortion energy.

Elucidation of Mutual Orthogonality in Bioorthogonal Cycloadditions

Trans-cyclooctene (TCO): ΔE_{int}

- Frontier molecular orbital (FMO) analysis
- The smaller orbital energy gap between TCO and tetrazine makes the favorable orbital interaction in TS1-Tz stronger than that in TS1-Azide.

Dibenzocyclooctyne (DBCO): ΔE_{dist}

- The structural analysis of transition states
- Because of the great steric hindrance caused by the two aryl hydrogen atoms (marked ○), the steric effect overwhelms the electronic effect, leading to the exclusive azide selectivity.

Calculation-based Design in Bioorthogonal Cycloadditions

Principles for the design of orthogonal reaction pairs

 Intrinsically more reactive substances can be made less reactive by increasing the distortion controlled by steric effects

Prediction of Mutual Orthogonality of Two New Bioorthogonal Reagents

Application of Methylcyclopropene-Tetrazine Conjugation in Living Systems

Application as a new bioorthogonal reaction

- In-vitro selective protein modification
- Metabolic incorporation and labeling of cyclopropenes onto live cell surfaces

- Elucidation of the substituent effects on tetrazine cyclopropene ligation
- Identification of new mutual orthogonal reaction pairs
- Demonstration of in-cell protein labeling

biotin

cell

Uncovering the Key Mechanism of the Reactivity/Stability Trade-Off

The influence of aryl substituents of tetrazine on the click reactivity

b FMO-controlled reactivity vinyl ether-Tz 2-pyridyl-Tz 4-pyridyl-Tz frequently used^[2-3,32] rarely used^[36] recently introduced^[29] increased reactivity bioorthogonal tools higher reactivity due · high reactivity due to to more electrondespite no electronelectron-withdrawing? withdrawing effect withdrawing?

Question

 Are there any yet overlooked mechanistic aspects other than FMO interactions that have a crucial effect on the reactivity of tetrazine?

 Revealing the key mechanism of the substituent effects on Tz-TCO cycloaddition using **Distortion/Interaction model**.

Relationship of the Orbital Energies and the Reaction Rates

FMO analysis using DFT calculation

 As expected, the order of the orbital energies was Ph > 2Pyr, 3Pyr > 4Pyr

Experimental measurement of reaction rate

 The reactivity trend for Ph, 3Pyr, and 4Pyr seems to be governed by FMO interactions.

- **2Pyr** is **significantly more reactive** (>3-fold) than expected based on the respective orbital energy.
- → The high IEDDA reactivity of 2Pyr cannot be attributed to the electron-withdrawing effect.

Distortion/Interaction Analysis of Tetrazine-TCO IEDDA Reactions

- ΔE_{dist} for 2Pyr is about 1.5 kcal/mol lower than that for Ph, 3Pyr, and 4Pyr.
 - → The increased reactivity of **2Pyr** with TCO is **mainly caused by a reduced distortion energy**.

Uncovering the Key Role of Distortion in Tetrazine-TCO IEDDA Reactions

- In Ph, 3Pyr, and 4Pyr, the aryl moiety is tilted only in the reaction with TCO due to the steric demand of the allylic CH₂.
- For 2Pyr, a much stronger tilt was observed with TCO, which did not change with ethylene.
- → An intrinsic property of 2-pyridyl-Tz rather than forced by steric interactions.

- A nitrogen-nitrogen interaction destabilizes the 2-pyridyl-Tz.
- → The key factor of the reactions of 2-pyridyl-Tz with TCOs is the reduced Tz distortion energies caused by N-N repulsive intramolecular interactions.

Repulsive *O–N* Interaction Increases the Reactivity of Vinyl Ether-Tz

 $\Delta E_{dist} = 18.9$

- Reduced rotational barrier
- Non-electron-withdrawing character
- Significantly stronger tilt of the vinyl—Tz bond
- Low distortion energies (ΔE_{dist})
- Low free energy of activation (ΔG^{\dagger})

O-N repulsion plays a crucial role regarding the potentially increased reactivity of MVE

 $\Delta E_{dist} = 17.8$

Uncovering the Key Role of Distortion in The Reactivity/Stability Trade-Off

 Non-electron-withdrawing DHP substituents can be used to significantly increase the IEDDA reactivity of Tz while maintaining a high compound stability.

Short Summary

Transition states analysis

Distortion/Interaction (D/I) model

Generalized principles development

Reactivity / stability trade-off

New design

New Mutual orthogonal pair

New structure with high reactivity & stability

Contents

- **♦**Introduction
- **♦**Main
 - > Historical example: Bioorthogonal Cycloaddition
 - Mutual orthogonality & Motif expansion
 - Reactivity / stability trade-off
 - > Recent example: Chemoselective Cysteine Bioconjugation
 - Reactivity
 - Modularity
- **♦**Summary & Perspective

Chemoselective Cysteine Bioconjugation

Cys selective bioconjugation

The unique nucleophilic properties of the sulfhydryl group

The most widely used method

(Retro-Michael addition in the presence of external thiols)

Ethynyl phosphorus(V) electrophiles

Effects of Substituents around Phosphorus on Thiol Addition Reactivity

 R_1 = ethyl, 2-nitrobenzyl, phenyl, trifluoroethyl

R₂ = phenyl, 3-phenylpropyl

• Electron-withdrawing substituents at the *N*- and the *O*-residue increased the speed of the thiol addition.

The Mechanism behind Enhanced Reactivity of Ethynyl P(V) Electrophiles

(a)
$$\begin{array}{c} & & & & & \\ O & & & & \\ O & & & & \\ EtO-P-X-EDANS \\ \hline \\ & & & \\ & & & \\ \hline \\ & & & \\$$

- The heteroatoms bound to the central phosphorus atom have a notable influence on the overall thiol addition reactivity.
- Not consistent with simple electronegativity considerations (S: 2.5, O: 3.5, N: 3.0).

Pursue a mechanistic rationale using DFT calculation

The Mechanism behind Enhanced Reactivity of Ethynyl P(V) Electrophiles

Possible timings for deprotonation

- The thiol cannot form an addition product
- The thiolate addition is feasible

Computationally examined mechanistic pathway

Substrate		ΔG^{\ddagger}
X = S	13	24.67
X = O X = NH	14 15	26.89 30.20
$\mathbf{v} = \mathbf{v}\mathbf{u}$	13	30.20

Calculated barriers correlate well with the trends observed in the experimental rates.

-0.068 eV

The Mechanism behind Enhanced Reactivity of Ethynyl P(V) Electrophiles

[

DFT-Guided Discovery of Ethynyl-Triazolyl-Phosphinates as Modular Electrophiles

Previous modular ethynyl P(V) electrophiles

A. Staudinger induced electrophilic phosphonamidates for Cys-selective protein modification^[35]

B. Diethynyl-phosphinates for Cys-selective antibody rebridging and protein (double-)modification^[34]

Discovery of new modular ethynyl P(V) electrophiles

 Ethynyl-Triazolyl-Phosphinates (ETPs) as readily accessible, fast, and highly selective thiol-electrophiles, guided by DFT-based computer models.

DFT-Guided Discovery of Ethynyl-Triazolyl-Phosphinates as Modular Electrophiles

Design to increase the reaction speed of ethynyl P(V) electrophiles

This work: Modular building blocks for tunable chemoselective thiol bioconjugation

- The bond P-XEt located in an antiperiplanar position to the lone-pair played a decisive role in accepting the electron density.
 - Use heterocyclic substituents to achieve both an electron-withdrawing inductive effect and π-conjugation with the lone-pair electrons.

Easily accessed via Cul-catalyzed azide-alkyne cycloaddition

DFT-Guided Discovery of Ethynyl-Triazolyl-Phosphinates as Modular Electrophiles

The substituents influence of the π -system to enhance the reactivity

Delocalization of electrons into vacant orbitals related to the P-R bonds is feasible.

Application of Ethynyl-Triazolyl-Phosphinates as Modular Electrophiles

The experimental thiol addition kinetics

• ETP electrophile (3) showed accelerated reaction kinetics, which is in agreement with the DFT-calculated reaction barriers

Cysteine-selective peptide modification

 P5-LUXendin645 specifically labelled CHO-K1 cells stably expressing SNAP-GLP1R.

Contents

- **♦** Introduction
- **♦** Main
 - > Historical example: Bioorthogonal Cycloaddition
 - Mutual orthogonality & Motif expansion
 - Reactivity / stability trade-off
 - > Recent example: Chemoselective Cysteine Bioconjugation
 - Reactivity
 - Modularity
- **♦**Summary & Perspective

Summary & Perspective

Challenges of Bioconjugations

• The critically restricted scope of chemical reactions that can be performed in a biological context.

Computational Mechanistic Analysis

In-depth insights and understanding about structure—reactivity trends from transition state analysis

→ Constitute a solid foundation for extremely fast, stable reactions with high utility

Combination with Chemical Ingenuity

Improve and expand the bioconjugations, and open new capabilities in the life sciences