Molecular mechanism and functionalization of optogenetic tool from the protein perspective

2020/12/10 Literature Seminar B4 Habazaki

What is Optogenetics?

Optogenetics is the technique that allows precise and fast control of the activity of targeted brain cells!

Abstract

A new ChR2 achieved minimally invasive optogenetic stimulation

Brain damage...

Buchen, Nature 2010, 465, 26-28.

https://www.clea-japan.com/products/animal/inbred

A significant disadvantage of optogenetics is permanent damage to the brain...

Now it is possible to activate any mouse brain region, non-invasively using ultra light-sensitive Channelrhodopsin mutant, SOUL!

Contents

Introduction

- Artificial control of neuronal activity
- New technique to control neuronal activity using light; Optogenetics

Photoactivation mechanism of ChR2

- Photoreceptor protein; Rhodopsin
- Structure and photocycle of ChR2
- Methods used to investigate the molecular mechanisms of ChR2
- Light absorption and photoisomerization of retinal
- Rearrangement of hydrogen-bond network and channel opening

Application of optogenetics

Development of less invasive optogenetics tools

- Highly light-sensitive ChR2 mutant ①; SFO family
- Highly light-sensitive ChR2 mutant 2; TC mutant
- New ultra light-sensitive ChR2; SOUL
- Less invasive optogenetic stimulation using SOUL

Summary & Perspective

Contents

Introduction

- Artificial control of neuronal activity
- New technique to control neuronal activity using light; Optogenetics

Photoactivation mechanism of ChR2

- Photoreceptor protein; Rhodopsin
- Structure and photocycle of ChR2
- Methods used to investigate the molecular mechanisms of ChR2
- Light absorption and photoisomerization of retinal
- Rearrangement of hydrogen-bond network and channel opening

Application of optogenetics

Development of less invasive optogenetics tools

- Highly light-sensitive ChR2 mutant ①; SFO family
- Highly light-sensitive ChR2 mutant 2; TC mutant
- New ultra light-sensitive ChR2; SOUL
- Less invasive optogenetic stimulation using SOUL

Summary & Perspective

Artificial control of neuronal activity

Question of neuroscientists :

How does the activity of certain neurons in living animals relate to the function of the brain?

- Observing the relationship between neural activity and brain function
- Manipulating neural activity and examining what happens in the brain

Electrical stimulation

- The previous major method of artificial induction of neuronal activity
 - Fast control of neuronal activity

Permanent damage to the brain

Unspecific excitation of a wide spread neuronal network

Artificial control of neuronal activity

Question of neuroscientists :

How does the activity of certain neurons in living animals relate to the function of the brain?

- Observing the relationship between neural activity and brain function
- Manipulating neural activity and examining what happens in the brain

Caged reagent

• Neurotransmitters whose activity is controlled by light

Less invasive than electrical stimulation

Excitation of specific location

Unspecific excitation of a wide spread neuronal network

Kramer et al. Nat Neurosci 2013, 16, 816-823.

Introduction

New technique to control neuronal activity using light; Optogenetics

Needs : Cell type-specific neural activity manipulation technique was desired.

Discovery : ChR2 was discovered as a **light-sensitive protein** which has **channel** function.

Optogenetics

Idea : Expressing ChR2 in neurons induces light-induced depolarization

Deisseroth et al. Nat Neurosci 2005, 8, 1263-1268.

New technique to control neuronal activity using light; Optogenetics

Buchen, Nature 2010, 465, 26-28.

Contents

Introduction

- Artificial control of neuronal activity
- New technique to control neuronal activity using light; Optogenetics

Photoactivation mechanism of ChR2

- Photoreceptor protein; Rhodopsin
- Structure and photocycle of ChR2
- Methods used to investigate the molecular mechanisms of ChR2
- Light absorption and photoisomerization of retinal
- Rearrangement of hydrogen-bond network and channel opening

Application of optogenetics

Development of less invasive optogenetics tools

- Highly light-sensitive ChR2 mutant ①; SFO family
- Highly light-sensitive ChR2 mutant (2); TC mutant
- New ultra light-sensitive ChR2; SOUL
- Less invasive optogenetic stimulation using SOUL

Summary & Perspective

Structure of ChR2

Photoreceptor protein; Rhodopsin

- Apoprotein; Opsin
- Chromophore; retinal

Opsin protein

• Seven transmembrane α-helices (TM)

Retinal chromophore

- Forming a Schiff base linkage with a lysine residue in the middle of TM7
- Isomerization from all-*trans*-retinal to 13-*cis*-retinal by the photoactivation

Ernst et al. Chem. Rev. 2014, 114 (1), 126-163.

Structure of ChR2

Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366.

Methods used to investigate the molecular mechanisms of ChR2

Electrophysiological Studies

Patch-Clamp Recordings

Large conformational changes in the

protein backbone

Methods used to investigate the molecular mechanisms of ChR2

Time-resolved spectroscopy

•

(e.g. Protonation state (RSB or RSBH+))

Heberle *et al. PNAS* **2013**, *110 (14)*, E1273-E1281.

Photocycle of ChR2

Important points in the optical response of ChR2

- **1** Photoisomerization of retinal
 - = Trigger of photoactivation

2 Change in the protonation state of RSB= Important switch of channel gating

3 Changes in the H-bonding networks= Key factors of conformational change

☆Channel gating does not rely on the steric effect of retinal isomerization!

Photocycle of ChR2

Heberle *et al. PNAS* **2013**, *110 (14)*, E1273-E1281. Gordeliy, Bamberg, Büldt *et al. Science* **2017**, *358*, 6366.

Heberle *et al. J. Am. Chem. Soc.* **2009**, *131 (21)*, 7313-7319. Ernst *et al. Chem. Rev.* **2014**, *114 (1)*, 126-163. 16

Light absorption and photoisomerization of retinal

Channel opening phase

 The initial photochemical reaction in rhodopsins is known to be one of the fastest and most efficient chemical events in biology!

Heberle *et al. PNAS* **2013**, *110 (14)*, E1273-E1281.

Ernst et al. Chem. Rev. 2014, 114 (1), 126-163.

Light absorption and photoisomerization of retinal

Observation using X-ray free-electron lasers (XFELs) of Bacteriorhodopsin

The ultrafast structural changes to the retinal was probed!

Ultrafast charge transfer along retinal is a driving force for ultrafast response of the counterion cluster.

→Possibly contributing to the stereoselectivity and efficiency.

Light absorption and photoisomerization of retinal

Photoactivation mechanism of ChR2

Rearrangement of hydrogen-bond network and channel opening

Channel opening phase

Ultrafast isomerization of retinal can not directly cause major structural changes.

→The high-energy H-bonding network causes structural changes with energetic relaxation!

Heberle et al. PNAS 2013, 110 (14), E1273-E1281. Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366. 20

Proton transfer from RSBH+ to D253 and rearrangement of D253

Spectroscopic data :

- **D253** serves as **the proton acceptor** of RSBH+.
- The strong interaction of the protonated D253 with the E123 carboxylate is observed after isomerization of retinal.

Heberle *et al. PNAS* **2013**, *110 (14)*, E1273-E1281. Gordeliy, Bamberg, Büldt *et al. Science* **2017**, *358*, 6366.

Rearrangement of H-bonding network and opening of two gates

Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366.

Channel opening phase

Ultrafast isomerization of retinal can not directly cause major structural changes.

→The high-energy H-bonding network causes structural changes with energetic relaxation!

Heberle et al. PNAS 2013, 110 (14), E1273-E1281. Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366. 23

Rearrangement of H-bonding network and opening of the remaining gate

Structural & Spectroscopic data :

• The global reorientation of TM 2 occurs during channel opening.

Hegemann, Gerwert et al. Angew. Chem. Int. Ed. 2015, 54, 4953-4957.

Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366. Bartl et al. J. Biol. Chem. 2008, 283, 35033-35041. 24

Rearrangement of H-bonding network and opening of the remaining gate

Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366.

Short Summary

Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366.

Contents

Introduction

- Artificial control of neuronal activity
- New technique to control neuronal activity using light; Optogenetics

Photoactivation mechanism of ChR2

- Photoreceptor protein; Rhodopsin
- Structure and photocycle of ChR2
- Methods used to investigate the molecular mechanisms of ChR2
- Light absorption and photoisomerization of retinal
- Rearrangement of hydrogen-bond network and channel opening

Application of optogenetics

Development of less invasive optogenetics tools

- Highly light-sensitive ChR2 mutant ①; SFO family
- Highly light-sensitive ChR2 mutant 2; TC mutant
- New ultra light-sensitive ChR2; SOUL
- Less invasive optogenetic stimulation using SOUL

Summary & Perspective

Application of optogenetics

Regulation of parkinsonian motor behaviours by optogenetic control

D1→direct-pathway D2→indirect-pathway

 Direct-pathway activation completely restored motor behaviour to pre-lesion levels in in Parkinson's disease-model mice!

Kreitzer et al. Nature 2010, 466, 622-626.

Contents

Introduction

- Artificial control of neuronal activity
- New technique to control neuronal activity using light; Optogenetics

Photoactivation mechanism of ChR2

- Photoreceptor protein; Rhodopsin
- Structure and photocycle of ChR2
- Methods used to investigate the molecular mechanisms of ChR2
- Light absorption and photoisomerization of retinal
- Rearrangement of hydrogen-bond network and channel opening

Application of optogenetics

Development of less invasive optogenetics tools

- Highly light-sensitive ChR2 mutant ①; SFO family
- Highly light-sensitive ChR2 mutant 2; TC mutant
- New ultra light-sensitive ChR2; SOUL
- Less invasive optogenetic stimulation using SOUL

Summary & Perspective

Development of less invasive optogenetic tools

Brain damage...

Buchen, Nature 2010, 465, 26-28.

Optogenetics

Development of less invasive optogenetic tools is a very important challenge!

One of the strategies of less invasive optogenetic tools :

Engineering high light-sensitive ChR2 mutants!

... ChR2 mutants that can drive a certain amount of photocurrent even by very weak light (only a little photon).

Highly light-sensitive ChR2 mutant (1); SFO family

Step-Function Opsin (SFO) family

- Mutation : C128X or D156A (X = S, T, A)
- Phenotype :

Significantly stable open channel state

 \rightarrow Accumulation of the conducting state

Deisseroth, Hegemann *et al. Nat Neurosci* **2009**, *12*, *229*-234. Bamann *et al. Biochemistry* **2010**, *49* (*2*), *267*-278. Gordeliy, Bamberg, Büldt *et al. Science* **2017**, *358*, 6366.

Development of less invasive optogenetic tools

Highly light-sensitive ChR2 mutant (1); SFO family

Step-Function Opsin (SFO) family

- Mutation : C128X or D156A
- Phenotype :

Significantly stable open channel state

→Accumulation of the conducting state

Deisseroth, Hegemann et al. Nat Neurosci 2009, 12, 229-234.

Deisseroth, Hegemann, Yizhar et al. Nature 2011, 477, 171-178.

<u>Stable Step-Function Opsin (SSFO)</u>

- Mutation : C128X and D156A
- Phenotype :

More stable open channel state!

Highly light-sensitive ChR2 mutant ①; **SFO family**

SFO/SSFO act as photon integrators across time!

Deisseroth, Hegemann, Yizhar et al. Nature 2011, 477, 171-178.

Development of less invasive optogenetics tools

Highly light-sensitive ChR2 mutant ①; SFO family

Channel closing phase

The mutations of SFO family slow down the steps related to channel closing.

→Accumulation of conducting states!

Heberle et al. PNAS 2013, 110 (14), E1273–E1281. Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366. 34

Highly light-sensitive ChR2 mutant (1); SFO family

Spectroscopic data :

- **D156 and C128 forms strong H-bond** in the DC gate.
- D156 serves as the proton donor of RSB.

In the conducting states, the H-bonding network from RSB to D156 is formed through T127 & C128.

(1) In the transition from P_2^{390} (RSB) to P_3^{520} (RSBH+), the proton is transferred from D156 to RSB.

Heberle *et al. Photochem. Photobiol. Sci.* **2010**, *9*, 194-198. Gordeliy, Bamberg, Büldt *et al. Science* **2017**, *358*, 6366. 35

Development of less invasive optogenetics tools

Highly light-sensitive ChR2 mutant ①; SFO family

Bamberg et al. PNAS 2009 , 106 (30), 12317-12322.

Heberle *et al. PNAS* **2013**, *110 (14)*, E1273-E1281.

Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366. 36

Highly light-sensitive ChR2 mutant (1); **SFO family**

Mechanism of D156A mutation

D156A mutation

Missing of proton donor

 \rightarrow Accumulation of conducting P_2^{390}

Heberle et al. PNAS 2013, 110 (14), E1273-E1281.

Gordeliy, Bamberg, Büldt et al. Science 2017, 358, 6366. 37

Highly light-sensitive ChR2 mutant (1); SFO family

Mechanism of C128X mutation

C128D156 T127 2.9 E123 2.6T159 3.2 K257 Retinal D156 T127 T128 E123 3.1 w5' 159 3.0 Retinal K257

<u>C128X mutation (X = S, T, A)</u>

- The mutation disturbs the structure of the retinal pocket.
 - →The deprotonated D156 is stabilized in a different interaction network.

 \rightarrow Accumulation of conducting P_3^{520}

Highly light-sensitive ChR2 mutant (2); TC mutant

TC mutant

- Mutation : T159C
- Phenotype : Dramatic increase of photocurrent amplitude

Oertner et al. PNAS 2011, 108 (18), 7595-7600.

Gordeliy, Bamberg, Büldt et al. Science **2017**, 358, 6366. 39

Highly light-sensitive ChR2 mutant (2); **TC mutant**

TC mutant

- Mutation : T159C
- Phenotype : Dramatic increase of photocurrent amplitude

Highlight :

Achieving non-invasive activation of any region of the mouse brain!

- SOUL retains a prolonged open state like SSFO.
- SOUL-expressing neurons had a significantly higher operational light sensitivity compared to SSFO.

In vivo characterization of SOUL

Encoding SOUL into the deepest region in the mouse brain

SOUL can be activated via transcranial optical stimulation in mice

regardless of the depth!

Less invasive optogenetic stimulation using **SOUL**

Transcranial optogenetic control of mouse behavior by SOUL

Previous finding :

Photoactivation of excitatory neurons in LH **suppresses feeding** in food-deprived mice.

The result of this report :

Food-deprived SOUL-expressing mice showed significantly reduced food consumption via transcranial blue light.

SOUL can manipulate neuronal activity and behavior through **non-invasive transcranial delivery of light** even **in the deepest mouse brain region**!

Less invasive optogenetic stimulation using SOUL

Transdural optogenetic activation of macaque cortex by SOUL

External optical stimulation of SOUL through native dura achieved **minimally invasive** activation of neurons across **all depths in superficial cortical regions**!

 \rightarrow Large scale optogenetic activation in primates!

Feng et al. Neuron **2020**, 107 (1), 38-51. Lawrence & Chang, J. Neurophysiol. **2020**, 124 (5), 1312-1314. 46

Contents

Introduction

- Artificial control of neuronal activity
- New technique to control neuronal activity using light; Optogenetics

Photoactivation mechanism of ChR2

- Photoreceptor protein; Rhodopsin
- Structure and photocycle of ChR2
- Methods used to investigate the molecular mechanisms of ChR2
- Light absorption and photoisomerization of retinal
- Rearrangement of hydrogen-bond network and channel opening

Application of optogenetics

Development of less invasive optogenetics tools

- Highly light-sensitive ChR2 mutant ①; SFO family
- Highly light-sensitive ChR2 mutant (2); TC mutant
- New ultra light-sensitive ChR2; SOUL
- Less invasive optogenetic stimulation using SOUL

Summary & Perspective

Summary & Perspective

- Optogenetics is the technique that allows precise and fast control of the activity of targeted brain cells using light-gated cation channel, channelrhodopsin-2 (ChR2).
- The key factors of channel-gating mechanism is...

Photoisomerization of retinal
Change in the protonation state of retinal Schiff base (RSB)
Conformational change induced by changes in the H-bonding networks

- Non-invasive / minimally invasive optogenetic activation of mouse / macaque monkey brain was achieved by ultra light-sensitive ChR2 mutant, SOUL.
- SOUL-based optogenetics may be explored for minimally invasive treatment of neurological and psychiatric disorders.