Journey from Lanthanide Triflate to Metalloenzyme-Like Catalyst

2015.11.21 (Sat.) KAJINO Hidetoshi(M1)

Today's topic ~S. KOBAYASHI's works~

1983 B. Sc.; The University of Tokyo (Professor T. Mukaiyama)
1987 Assistant Professor; Science University of Tokyo (SUT)
1988 Ph. D.; The University of Tokyo (Professor T. Mukaiyama)
1991 Lecturer; Science University of Tokyo (SUT)
1992 Associate Professor; Science University of Tokyo (SUT)
1998 Full Professor, School of Medicine, The University of Tokyo
2007 Full Professor, School of Science, The University of Tokyo

Shu KOBAYASHI

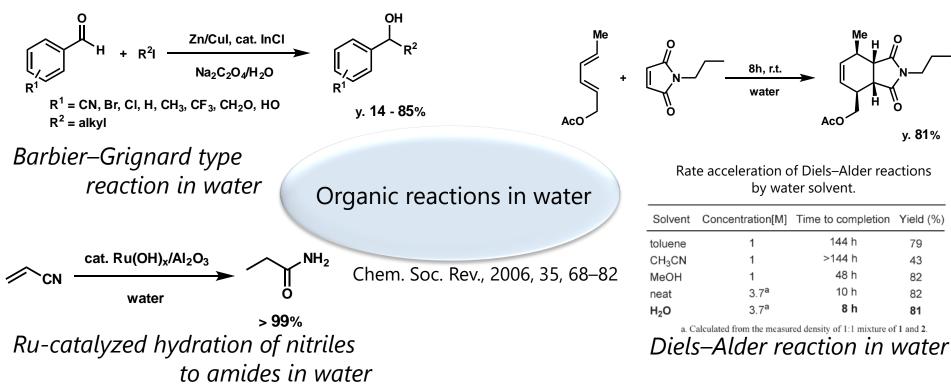
A leading chemist in the field of "water-tolerant Lewis acids"

1991 : Report that lanthanide and scandium triflates $(Ln(Otf)_3, Sc(Otf)_3)$ is usable as Lewis acid in water.

2015 : Development of metalloenzyme-like catalyst

(Very Important Paper of Chem. Asian J.)

In this seminar, focus on up to development of metalloenzyme-like catalyst from discovery of water-tolerant Lewis acids

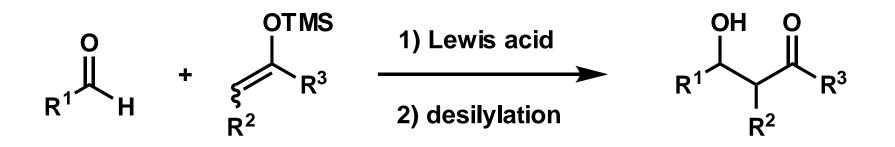

Table of contents

- 1. Introduction
- 2. Lanthanide triflate as water-tolerant Lewis acids
- 3. Development of "LASC"
- 4. Asymmetric aldol reactions in aqueous media
- 5. Metalloenzyme-Like Catalyst
- 6. Summary

1. Introduction

Organic chemistry in water

Introduction



Advantage : safe, benign, environmentally friendly, and cheap

 Disadvantage : Most organic substances are insoluble in water. Many reactive substrates, reagents, and catalysts are decomposed or deactivated by water.

📕 Mukaiyama aldol addition

Aldol addition is a powerful method for forming a C-C bond.

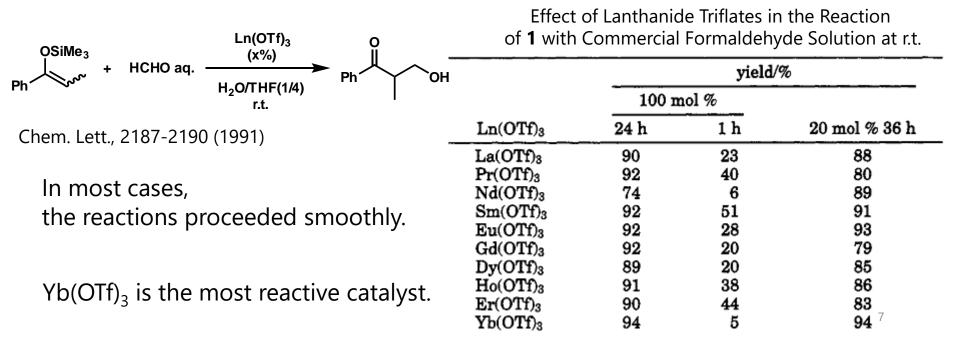
typical Lewis acids : TiCl₄, SnCl₄, BF₃•OEt₃

The Mukaiyama aldol addition is a type of aldol reaction between a silyl enol ether and an aldehyde or formate.

These reactants allow for a crossed aldol reaction between an aldehyde and a ketone or a different aldehyde without self-condensation of the aldehyde.

Lewis acids undergo hydrolysis by water molecules, so strict anhydrous conditions are needed in this reaction.

2. Lanthanide triflate as water-tolerant Lewis acids

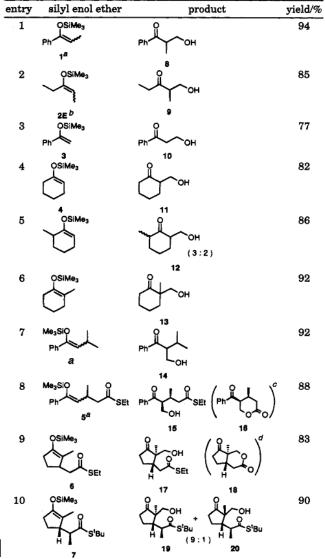

Use of $Ln(OTf)_3$ as Lewis acid

Lanthanide triflate as water-tolerant Lewis acids

 $Ln(OTf)_3$ is prepared from the corresponding lanthanide oxides (Ln_2O_3) and trifluoromethanesulfonic acid in water.

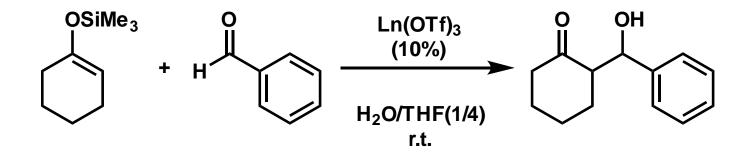
 $LnO_3 + 6CF_3SO_3H \longrightarrow 2Ln(OTf)_3 + 3H_2O$

Hydroxymethylation reactions by using Ln(OTf)₃



Several examples of hydroxymethylation reaction entry 1 Yb(OTf)₃ OSiMe₃ (10%) 2 R² + HCHO ag \mathbb{R}^1 H₂O/THF(1/4) Rっ r.t. 1) In every case, the reactions proceeded smoothly in high yield. 5 2) Di- and polyhydroxymethylated products were not observed. 3) The absence of equilibrium allowed for a regiospecific hydroxymethylation reaction. 4) Only a catalytic amount of Yb(OTf)₃ was required to 9 complete the reaction. 10

5) Almost 100% of Yb(OTf)₃ was quite easily recovered from the aqueous layer after the reaction was completed and it couldbe reused (third use(93%yield)).
 J. Org.Chem., 59, 3590-3596 (1994)

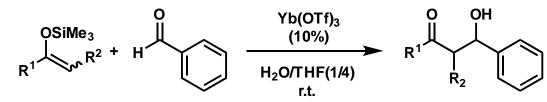

Lanthanide triflate as water-tolerant Lewis acids

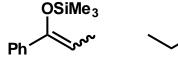
Reaction of Silyl Enol Ethers with Commercial Formaldehyde Solution Catalyzed by Yb(OTf)₃.

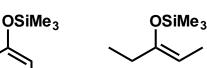
^a Z/E = >98/2. ^b Z/E = 1/4. ^c The mixture of the hydroxy thioester and the lactone (2:1) was obtained. The other diastereomers were not observed. ^d The mixture of the hydroxy thioester and the lactone (3:1) was obtained. Less than 3% yield of the other diastereomers were observed.

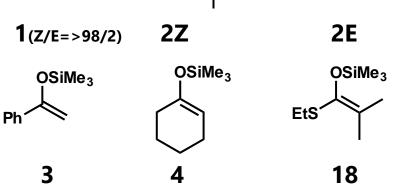
Screening of Ln(OTf)₃

Effect of Lanthanide Triflates in the Reaction of 4 with Benzaldehyde at r.t. for 20 h in H_2O -THF (1:4).

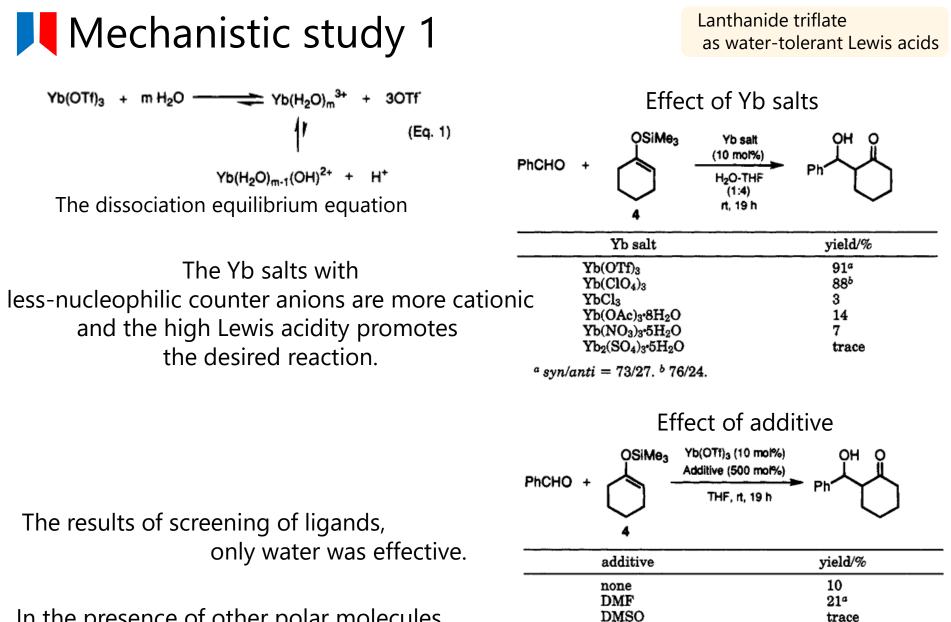

Ln(OTf)3	yield/%	Ln(OTf)3	yield/%
La(OTf)3	8	Dy(OTf)3	73
Pr(OTf) ₃	28	Ho(OTf) ₃	47
Nd(OTf) ₃	83	Er(OTf) ₃	52
$Sm(OTf)_3$	46	$Tm(OTf)_3$	20
Eu(OTf) ₃	34	Yb(OTf) ₃	91
Gd(OTf) ₃	89	Lu(OTf) ₃	88


High reactivity : Nd-, Gd-, Yb-, Lu(OTf)₃


Low reactivity : La-, Pr-, Tm(OTf)₃


Several examples of hydroxymethylation reaction 2

Lanthanide triflate as water-tolerant Lewis acids


1) In every case, the reactions proceeded smoothly in high yield.

2) Diastereoselectivitieswere generally good to moderate

Lanthanide Triflate-Catalyzed Aqueous Aldol Reaction by Using Yb(OTf)₃ (10 mol %)^{a)}.

entry	aldehyde	silyl enol ether	product	yield/%
1	PhCHO	4	22 ^b	91
2	PhCHO	2Z	23°	89
3	PhCHO	2E	23 ^d	93
4	PhCHO	1	24°	81
5	PhCHO	EtSC(OSi-	25	90
	•	Me ₃)=CMe ₂ 18		
6	p-Cl-PhCHO	4	26	89
7	p-MeO-PhCHO	4	278	77
8	(E)-CH ₃ (CH ₂) ₂ -	4	28 ^h	90
	CH=CHCHO			
9	Ph(CH ₂) ₂ CHO	2Z	29	79
10	Ph(CH ₂) ₂ CHO	2E	29 ⁱ	72
11	CH ₃ CHO	1	30/	93
12	$CH_2 = CHCHO$	1	31 [*]	82
13	ClCH ₂ CHO	1	32^l	95
14	ClCH ₂ CHO	3	33	67
15	ClCH ₂ CHO	18	34	66
16	PhCOCHO-H ₂ O	1	35^m	67
17	o-HO-PhCHO	1	36 ^h	81
18	2-pyridinecarbox- aldehyde	1	37^n	97

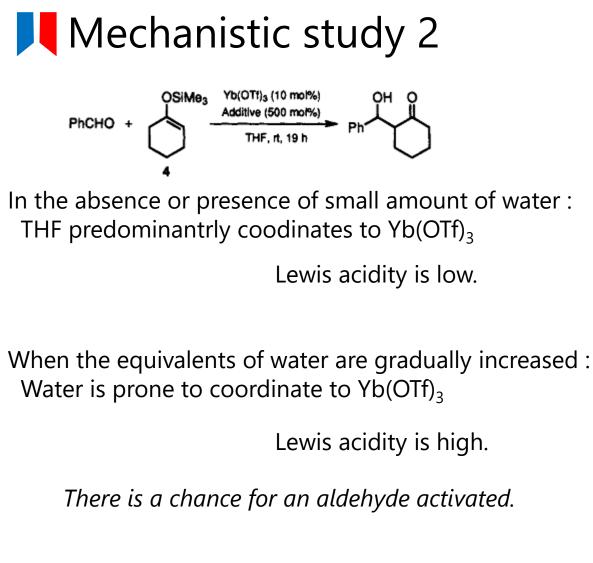
^a Gd(OTf)₃ was used in entries 11 and 12. In entry 17, Lu(OTf)₃ was used. ^b syn/anti = 73/27. ^c 63/37. ^d 71/29. ^e 53/47. ^f 65/35. ^g 61/39. ^h 55/45. ⁱ 68/32. ^j 46/54. ^k 60/40. ^l 45/55. ^m 27/73. ⁿ₁₀ 42/58.

In the presence of other polar molecules, the reaction proceeded very slowly.

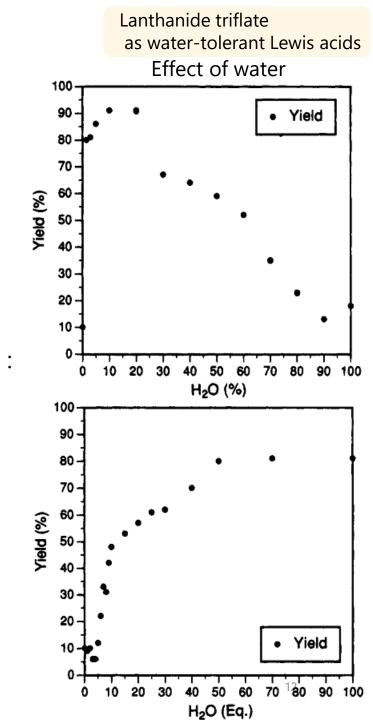
> H_2O 80° ^a syn/anti = 66/34. ^b 73/27. ^c 76/24.

Et_aN

 Et_2O


pyridine

trace


trace

11

 23^{b} 14

When the amount of water is further increased : Hydrolysis of the silyl enol ether precedes the desired aldol reaction

Short summary 1

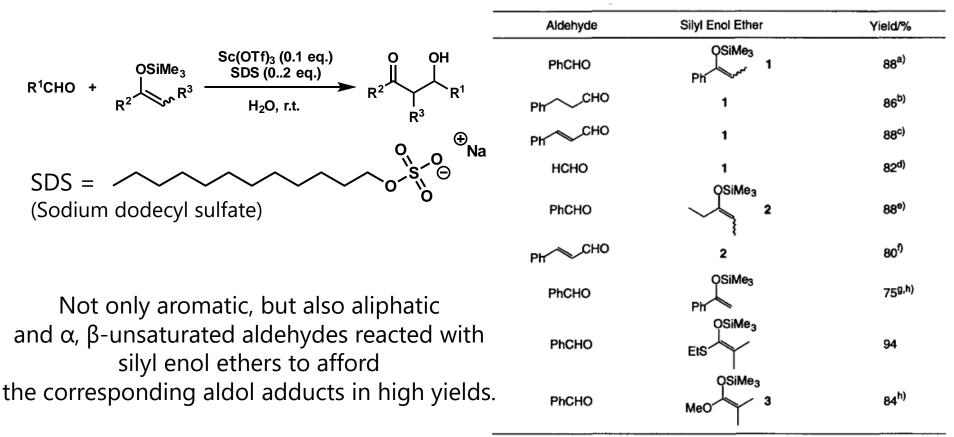
Discovery of lanthanide triflate as water-tolerant Lewis acids

<u>Problem</u>

When the amount of water is further increased,

a competitive reaction precedes the desired aldol reaction.

3. Development of "LASC"


Lanthanide triflate could not be developed into enantioselective asymmetric reactions.

4. Asymmetric aldol reactions in aqueous media

3. Development of "LASC"

Sc(OTf)₃-SDS system

Sc(OTf)₃-catalyzed Mukaiyama aldol reactions have been successfully carried out in aqueous solutions of surfactants.

Sc(OTf)₃-SDS system

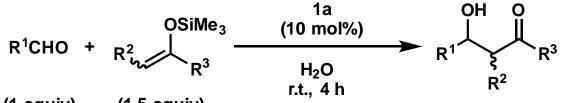
a) Syn/anti = 50/50. b) Syn/anti = 45/55. c) Syn/anti = 41/59. d) Comercially available HCHO aq. (3 ml), 1 (0.5 mmol), Sc(OTf)₃ (0.1 mmol), and SDS (0.1 mmol) were combined. e) Syn/anti = 57/43. f) Syn/anti = 69/31. g) Sc(OTf)₃ (0.2 eq.) was used. h) Additional silyl enolate (1.5 eq.) was charged after 6 h.

Tetrahedron Letters, Vol. 38, NO. 26, pp. 4559-4562, 1997

Lewis-Acid-Surfactant-Combined Development of "LASC" Catalysts (LASC)

LASC is more simplified catalyst than Sc(OTf)₃-SDS system

1a-1f were prepared from ScCl3 and the corresponding SDS or sodium alkanesulfonate.


1a : Sc(O₃SOC₁₂H₂₅)₃

 $1d: Sc(O_3SC_{12}H_{25})_3$

Schematic representation of **1a**

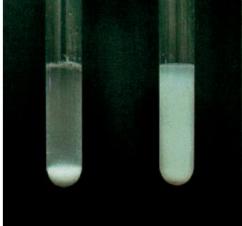
OSiMe ₃ PhCHO +	1a OH O (10 mol%)	Effect of Solvents on LASC (1a)-Catalyzed Aldol Reactions	
Phono Ph	H ₂ O Ph S Ph	solvent	yield (%)	
(1 equiv) (1.5 equiv)	r.t., 4 h	H ₂ O	92	
		CH ₃ OH	4	
		DMF	14	
The reaction in wat	ter afforded the product	DMSO	9	
		CH ₃ CN	3	
	in high yield.	CH ₃ Cl ₂	3	
		THF	trace	
Low yield were obs	served	Et ₂ O	trace	
in other organic solvent		toluene	trace	
		hexane	4	
		- (neat)	31	
Tetrahedron Letters 39 (1998) 5389-5392		^a When solvents other than H ₂ O an CH ₃ OH were used, the initially		
J. Am. Chem. Soc., Vol. 1		formed trimethylsilyl ether was converted to 3 (1 N HCl/THF (1/20), 0 °C).		

Substrate scope

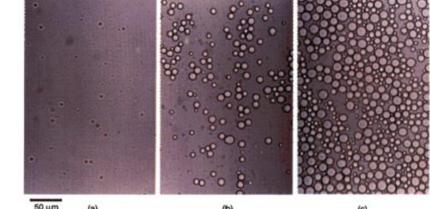
(1 equiv) (1.5 equiv)

LASC (1a)-Catalyzed Aldol Reactions in Water

\mathbb{R}^1	\mathbb{R}^2	R ³	product	yield (%)	syn/anti
Ph	Me	Ph	3	92	49/51
Ph(CH ₂) ₂	Me	Ph	4	88	44/56
PhCH=CH	Me	Ph	5	91	40/60
2-pyridyl	Me	Ph	6	84^a	24/76
PhCO	Me	Ph	7	86	66/34
Ph	Me	Et	8	84	78/22
p-ClPh	Me	Et	9	91	79/21
Ph(CH ₂) ₂	Me	Et	10	82 ^a	72/28
PhCH=CH	Me	Et	11	87	71/29
PhCH=CH	-(Cl	H ₂) ₄ -	12	85 ^a	52/48
Ph	H	Ph	13	94 ^{<i>a</i>,<i>b</i>}	
Ph	Me_2	SEt	14	98	
Ph	Me ₂	OMe	15	$80^{a,b}$	


^a 1a (20 mol %). ^b Silyl enolate (3 equiv).

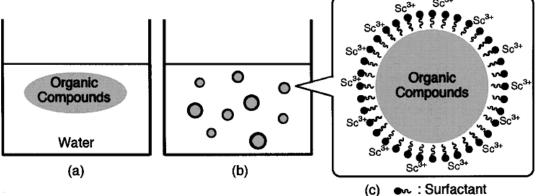
Aromatic as well as aliphatic, α , β -unsaturated, and heterocyclic aldehydes worked well.

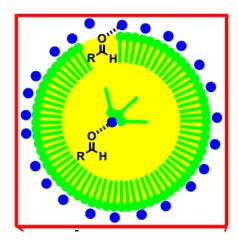

Silyl enol ethers, ketene silyl enol ethers, and an ester reacted well to give the corresponding adducts in high yields.

Characterization of the colloidal particle

LASCs such as 1a and 1d do not dissolve in water.
On the other hand, when the LASC was mixed with organic substrates in water, a white turbid mixture formed through colloid formation.

Mixtures of LASC 1d in water (left) and LASC 1d and benzaldehyde (1:10) in water (right)




Mixture of LASC 1d and benzaldehyde as detected by light microscopy.(a) 1d:benzaldehyde=1:10; (b) 1d:benzaldehyde =1:20; (c) 1d:benzaldehyde=1:100. In all cases, the concentration of 1d was 16.7 mM.

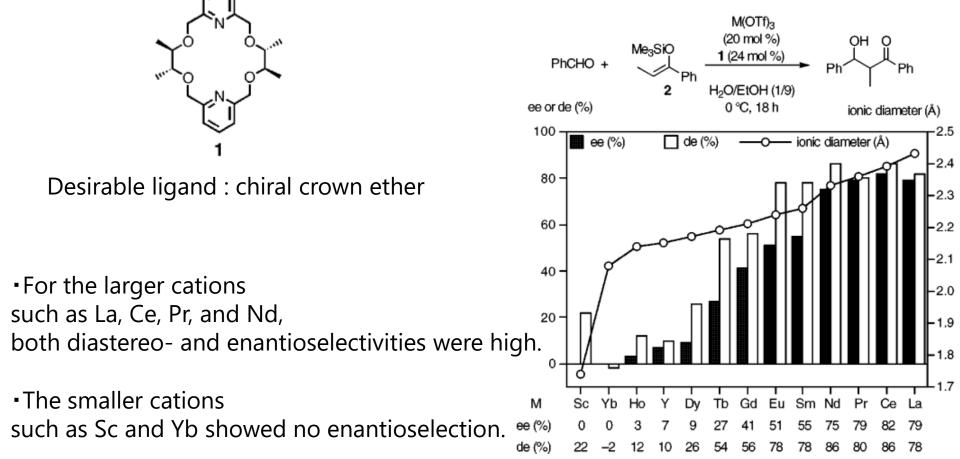
- Light microscopic observations of the colloidal particles revealed their spherical shape.
- Finally, all of 1d formed the spherical colloidal particles.

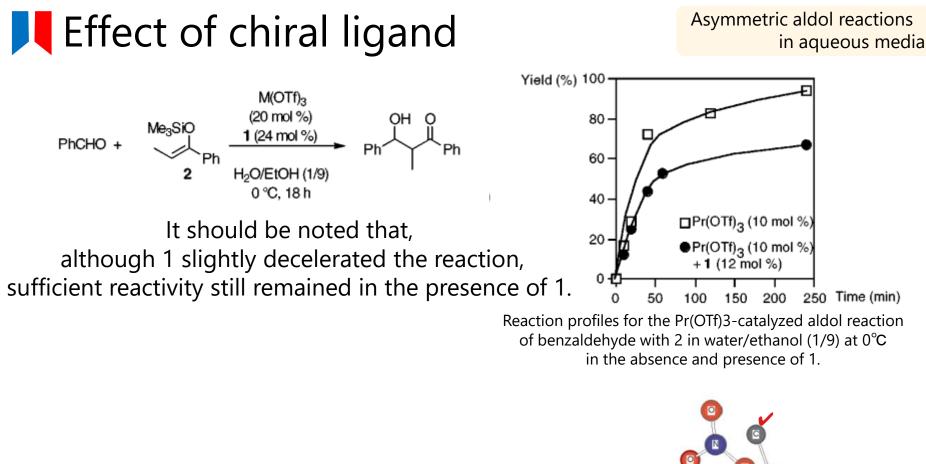
Mechanism of catalytic reactions.

Development of "LASC"

- (a) Without surfactants
- (b) With surfactants

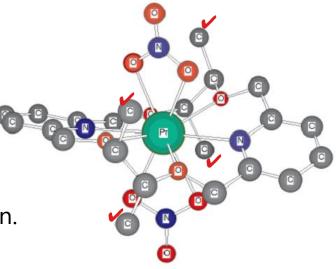
(c) A colloidal particle formed in a mixture in the presence of surfactants


Reaction mechanism


- 1) In the presence organic substrates, LASC molecules form stable colloidal particles. (the surfactant moiety of the LASCs surrounds the organic substrates.)
- 2) the countercations are attracted to the surface of the particles through electrostatic interactions between the anionic surfactant molecules and the cations.
- 3) Although each Sc(III) cation is hydrated by several water molecules, they can be readily replaced by a substrate.
- 4) The substrates to be activated move to the interface from the organic phase, coordinate to the cations, and then react with nucleophilic substances there.

4. Asymmetric aldol reactions in aqueous media

Chiral ligand for Ln(OTf)₃


Need to finding a chiral ligand which has strong binding ability and does not significantly reduce the Lewis acidity of $Ln(OTf)_3$.

•The methyl groups of 1 are all in axial positions.

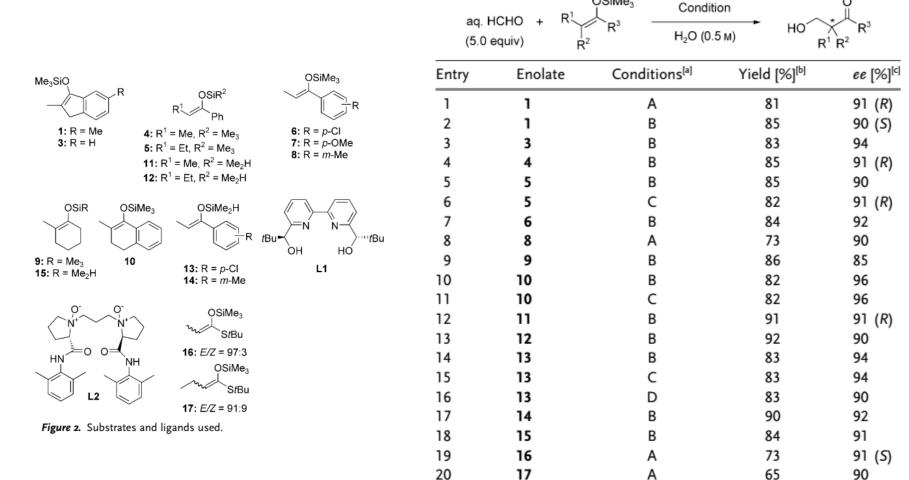
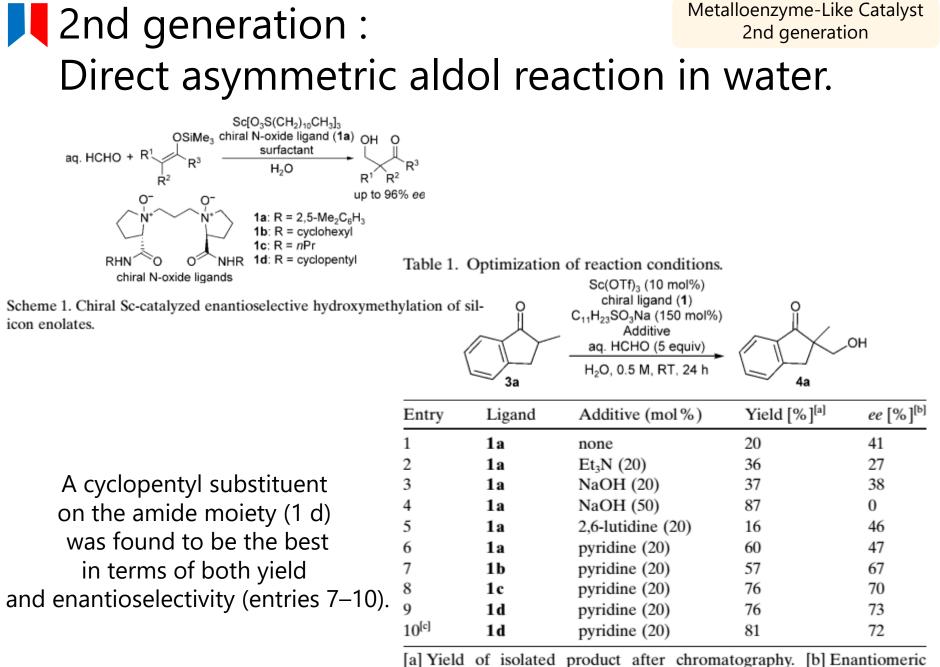

 one or two of the nitrate anions are dissociated in aqueous media and that aldehydes to be activated coordinate in place of the nitrate anion.

Figure 3. $[Pr(NO_3)_2 \cdot 1]^+$ moiety in the X-ray structure of $[Pr(\mathbb{NO}_3)_2 \cdot 1]_3[Pr(NO_3)_6]$. Hydrogen atoms are omitted for clarity.

5. Metalloenzyme-Like Catalyst

1st generation : Asymmetric hydroxymethylation in water



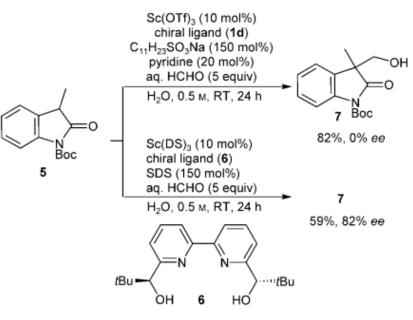
•by using

2 mol% or 1 mol% of the catalyst (Conditions C and D) led to the same range in yields and enantioselectivities as those reactions employing 10 mol% of the catalyst.

Angew. Chem. Int. Ed. 2008, 47, 6909 –6911

[a] Conditions A: Sc(DS)₃ (10 mol%), **L1** (12 mol%), Triton X-705, RT, 20 h. Conditions B: Sc[O₃S(CH₂)₁₀CH₃]₃ (10 mol%), **L2** (12 mol%), CH₃(CH₂)₁₀SO₃Na, 5 °C, 48 h. Conditions C: Sc[O₃S(CH₂)₁₀CH₃]₃ (2 mol%), **L2** (2.4 mol%), CH₃(CH₂)₁₀SO₃Na, 5 °C, 96–110 h. Conditions D: Sc[O₃S(CH₂)₁₀CH₃]₃ (1 mol%), **L2** (1.2 mol%), CH₃-(CH₂)₁₀SO₃Na, 5 °C, 81 h. [b] Yield of isolated product. [c] Determined by chiral HPLC analysis.

Chem. Asian J. 2010, 5, 490 - 492

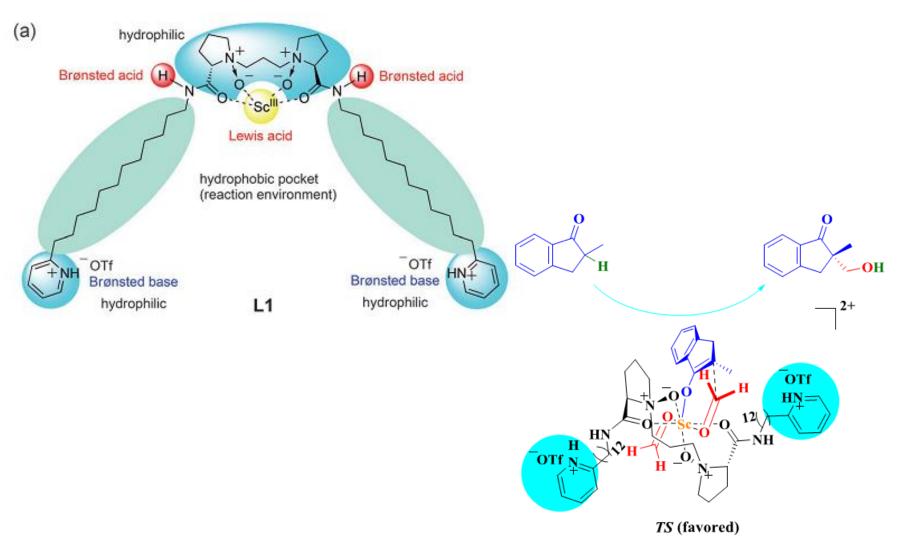

excess was determined by chiral HPLC analysis. [c] Reaction for for the formation of the formation of the formation for the formation for the formation for the formation for the formation of th

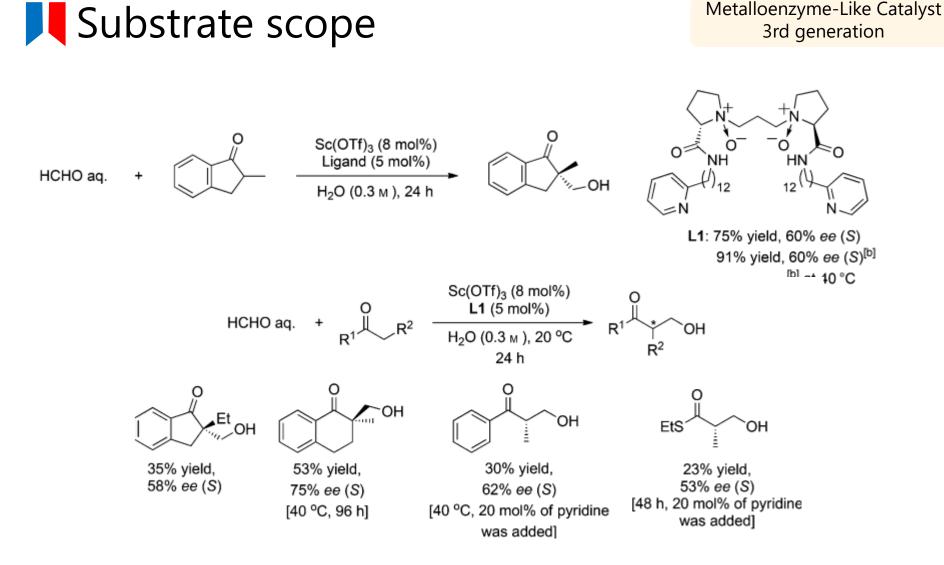
Substrate scope

Table 2. Asymmetric hydroxymethylation of ketones in water.^[a] Yield [%][b] ee [%]^[c] Product Entry Ketone Ο 81 72 1 3a OH 72 72 2 ÓН 3b 3[d] 39 88 ĊН 3c 4c **∆**[d] Ph 29 81 4d 3d ЮH 67 5 quant 3e 4e

[a] Conditions: Ketone **3** (0.3 mmol), Sc(OTf)₃ (10 mol%), N-oxide **1d** (12 mol%), $C_{11}H_{23}SO_3Na$ (150 mol%), pyridine (20 mol%), formalin (5 equiv), water, RT, 24 h. [b] Yield of isolated product after chromatography. [c] Enantiomeric excess was determined by chiral HPLC analysis. [d] Reaction was carried out at 40 °C for 48 h.

Metalloenzyme-Like Catalyst 2nd generation

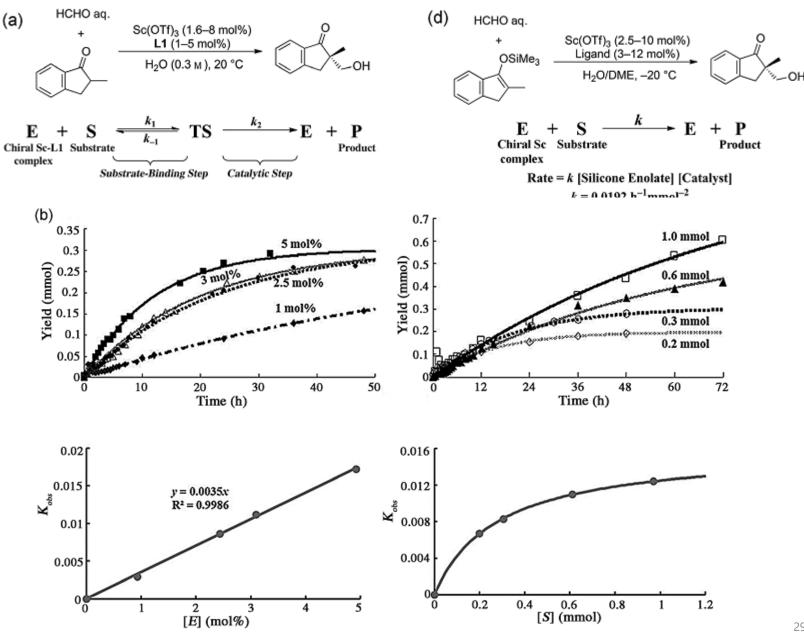



Scheme 2. Asymmetric hydroxymethylation of oxindole.

The addition of a catalytic amount of pyridine enabled us to use ketones directly in asymmetric hydroxymethylation reactions.

3rd generation : Metalloenzyme-Like catalyst

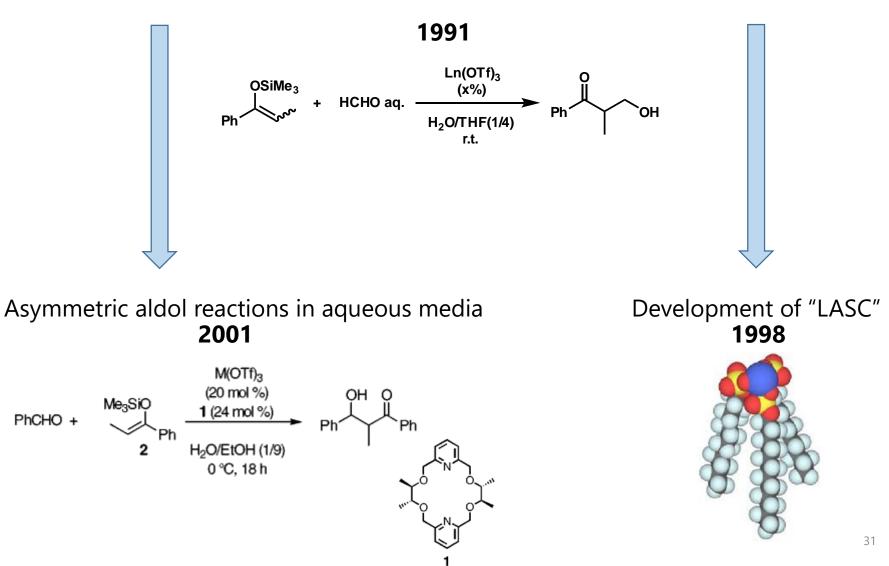
Metalloenzyme-Like Catalyst 3rd generation



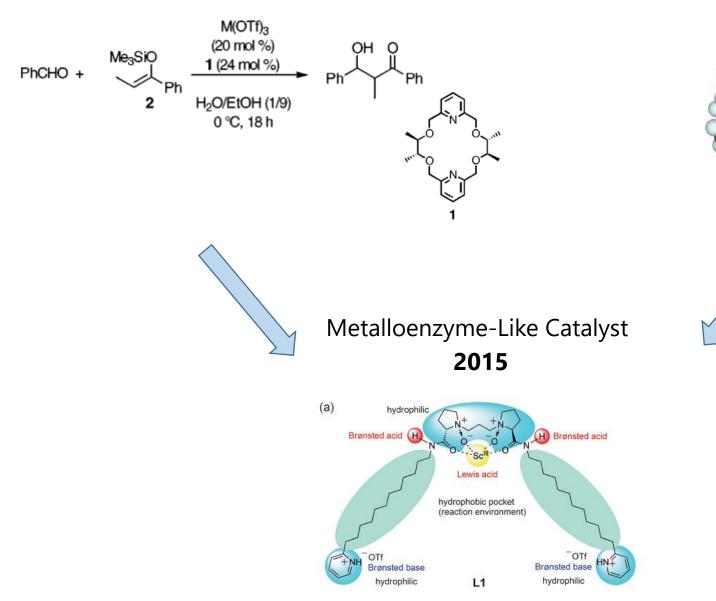
The addition of a catalytic amount of pyridine enabled us to use ketones directly in asymmetric hydroxymethylation reactions.

Reaction mechanism

Metalloenzyme-Like Catalyst 3rd generation



6. Summary


Summary

Discovery of lanthanide triflate as water-tolerant Lewis acids

Summary 2

Asymmetric aldol reactions in aqueous media 2001

Summary

Development of "LASC" 1998