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1. Introduction



1. Introduction
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Representatives

Nitroxyl radicals (nitroxides, aminoxyl radicals)



Use of Nitroxyl Radicals
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Tuning design for each purpose can improve the efficacy.

Material use

• Dye-sensitized solar cells

• Organic radical battery

Chemical use

• Oxidation catalyst

• Nitroxide mediated radical 

polymerization (NMP)

• Radical coupling

• Mechanism analysis

Biological use

• Spin probe

• Superoxide dismutase 

mimics

• Antioxidant



Property of Nitroxyl Radicals
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Thermodynamic stabilization

-> Delocalization of unpaired electron

• N-O bond contains three electrons.

• Bond order of N-O is 1.5.

• TEMPO is stabilized both thermodynamically and kinetically.

Kinetic stabilization

-> 4 α-methyl groups

• Four Me shield the radical.

Wertz, S.; Studer, A. Green Chem. 2013, 15 (11), 3116.



Property of Nitroxyl Radicals
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TEMPO

• Thermodynamic driving force 

for direct H-abstraction is low.

PINO:

Wertz, S.; Studer, A. Green Chem. 2013, 15 (11), 3116.

PINO

• Stronger H-abstraction 

reagent, but unstable.

(generated in situ)

• Used in transition-metal 

mediated C-H 

functionalization with Co, Mn.



Oxidation State of Nitroxyl Radicals
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• Oxoammonium ion acts as an active 

species in oxidation.

• Oxoammonium salt can be isolated 

with proper counteranion. (e.g. BF4
-) 

Oxidation states of nitroxyl radical

Generation of oxoammonium salt

• Acid cause disproportionation.

• Nitroxyl radical and hydroxylamine 

are oxidized into oxoammonium salt.
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2. TEMPOs and AZADOs



2-1. TEMPOs
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TEMPO (2,2,6,6-tetramethylpiperidyl-1-oxyl)

• Alcohol oxidation catalyst.
• 1° alcohol > 2° alcohol.

• Terminal oxidant: NaOCl, PhI(OAc)2, oxone, I2, O2, etc..



Alcohol Oxidation by TEMPO
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Oxoammonium as active species

Tebben, L.; Studer, A. Angew. Chem. Int. Ed. 2011, 50 (22), 5034.

Catalytic cycle

Wertz, S.; Studer, A. Green Chem. 2013, 15 (11), 3116.

pH < 4

pH > 5

Cope-type elimination 

from alcohol adduct

Hydride-transfer to 

oxoammonium cation



Alcohol Oxidation by TEMPO
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Aerobic oxidation with Cu

• Cu(II) isn’t sufficiently strong 

oxidant for the oxidation of 

TEMPO to TEMPO+.

• Oxoammonium cation isn’t 

generated.

NMI: N-methylimidazole

Simplified catalytic cycle

Stahl, S. S. et al. J. Am. Chem. Soc. 2013, 135 (6), 2357.



2-2. AZADOs
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Development of AZADOs

Steric hindrance

Problems with TEMPO

AZADO: 2-azaadamantane N-oxyl

Alcohol  oxidation 

intermediate 

steric repulsion between Me and R1, R2 
-> 1° alcohol > 2° alcohol

Iwabuchi, Y. Chem. Pharm. Bull. 2013, 61 (12), 1197.

reactivity stability



Catalytic Activity
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AZADO

1-Me-AZADO

TEMPO

Iwabuchi, Y. Chem. Pharm. Bull. 2013, 61 (12), 1197.



Redox Property
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Cyclic Voltammetry (CV)

• Stable for >100 measurement cycles.

a: TEMPO

b: AZADO

c: 1-Me-AZADO

d: 1,3-diMe-AZADO

294

236

186

136

nitroxide E0

Catalytic activity: a: TEMPO ~ d: 1,3-diMe-AZADO << c: 1-Me-AZADO < b: AZADO

High catalytic activity is mainly due to kinetic factors.

Readily

Reduced

Redox Potential (E0 vs Ag/Ag+)

Iwabuchi, Y. Chem. Pharm. Bull. 2013, 61 (12), 1197.

Oxidation

N-O・→N+=O

Reduction

N+=O→N-O・

Readily

Oxidized



Development of ABNO and Nor-AZADO
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• Nor-AZADO showed higher catalytic activity than AZADO.

Iwabuchi, Y. Chem. Pharm. Bull. 2013, 61 (12), 1197.



5-F-AZADO
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e- poor oxoammonium salt

Introduction of electron-withdrawing group

• NOx works as reoxidant. 

Iwabuchi, Y. et al. J. Am. Chem. Soc. 2011, 133 (17), 6497.

wider scope of substrate



Mechanism Analysis with 5-F-AZADO
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5-F-AZADO -> Lower basicity 

prevents the formation of IV and V.

Proposed mechanism

Iwabuchi, Y. et al. J. Org. Chem. 2014, 79, 10256.



General Trend of Redox Property
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Redox potential E0 (vs Ag/Ag+)

EWG

-> destabilization of N+=O

-> higher redox potential

EDG

-> stabilization of N+=O 

-> lower redox potential

Iwabuchi, Y. et al. Tetrahedron Lett. 2012, 53 (16), 2070.



Catalytic Activity vs Redox Potential
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Redox potential

AZADO 236 mV

5-F-AZADO 412mV

5,7-diF-AZADO 591 mV

• The lower the redox potential, 

the higher the catalytic activity.

(Probably because reoxidation 

into oxoammonium species is 

favorable.)

• Redox potential is an important 

factor.

Iwabuchi, Y. et al. Tetrahedron Lett. 2012, 53 (16), 2070.

Readily

Oxidized



2-3. Steric Effect vs Driving Force
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Cyclic voltammogram

Increment of oxidation current and disappearance of reduction current

-> electrocatalysis

a: AZADO

b: ABNO

c: TEMPO

d: 4-acetamido-TEMPO

e: 4-oxo-TEMPO

with 1-butanol (50 mM)without 1-butanol 

Stahl, S. S. et al. J. Am. Chem. Soc. 2015, 137 (46), 14751.



Oxidation Under Electrochemical Conditions
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TOFs of alcohol oxidation

electrode

Electrochemical oxidation

Stahl, S. S. et al. J. Am. Chem. Soc. 2015, 137 (46), 14751.



Oxidation Under Chemical Conditions

Poor catalytic activity of 4-acetamido-TEMPO

Formation of N-O・->N+=O (reoxidation) is slow.

Chemical oxidation 1-Butanol oxidation with NaClO

Left :

nitroxyl radical 

Right :

oxoammonium

Concentration in the presence of NaClO

Stahl, S. S. et al. J. Am. Chem. Soc.

2015, 137 (46), 14751.



Intrinsic Catalytic Activity of 4-Acetamido-TEMPO
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Chemical conditions vs electrochemical conditions

Oxidation with NaClO

Electrochmical Oxidation

• Intrinsic reactivity can overcome the steric effect.

High reactivity

Low reactivity

Stahl, S. S. et al. J. Am. Chem. Soc. 2015, 137 (46), 14751.

Oxidation of 1-butanol Compared with TEMPO…



Use of Stoichiometric Amount of Oxoammonium
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• 1.7-3.2 times faster than 4-acetamido-TEMPO.

Bailey, W. F. et al. J. Org. Chem. 2017, 82 (21), 11440.

Rate of oxidation (k * 104 s-1)



Short Summary
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• AZADOs were designed to achieve higher reactivity.

• Steric property and electric property are important for them.
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3. Design Concepts 

of Nitroxyl Radicals



3-1. Effect of Direct Conjugation on Redox Property 
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2-Pyridyl nitroxyl radicals

Direct conjugation of N-O with Py.

2-Pyridylhydroxylamine isoindoline

σ+

5-NMe2

5-SMe
5-Me

H 5-CF3

Piperidine, isoindoline, azaphenalene derivatives

• Over 4 times sensitive to substituent 

effect than isoindoline.

->easy to tune the reactivity and stability.

• SOMO is localized on N-O bond.

• Substituent effects: σ-inductive effects.

Schelter, E. J. et al. J. Org. Chem. 2013, 78 (12), 6344.



SOMOs of 2-Pyridyl nitroxides
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SOMO (calculated)

SOMO delocalizes at 1-, 3-, 5- position.

-> Substituent at 1-, 3- and 5- position can affect the energy of SOMO and 

enables redox property tuning.
Schelter, E. J. et al. J. Org. Chem. 2013, 78 (12), 6344.



3-2. Twisted Diaryl-Nitroxyl Radical
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11

• Normally unstable due to spin delocalization on Ar.

Diaryl-Nitroxyl radical

Magdesieva, T. V. et al. Electrochim. Acta 2018, 260, 459.

Magdesieva, T. V. et al. Eur. J. Org. Chem. 2017, 2017 (32), 4726.

Decomposition pathway

• Substituent at p-position can prevent this pathway.



Calculated Structure and SOMO
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• One ring with o-substituent is out of conjugation due to its bulkiness.

-> Spin delocalization over the ring is prevented.

twisted diaryl-nitroxyl radical

Magdesieva, T. V. et al. Electrochim. Acta 2018, 260, 459.

TEMPO
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Redox Property

• Oxidation into oxoammonium cation is less favorable than TEMPO.

Redox potential E0 (vs Ag/Ag+)

Oxidation (N-O・ <-> N+=O) : E0
ox Reduction (N-O・ <-> N-O-) : E0

red

Effect of twist

Effect of twist
Magdesieva, T. V. et al. Electrochim. Acta 2018, 260, 459.



• ΔE = E0
ox - E0

red increases when twist exists.

<-> Inductive substituent normally shifts E0
ox and E0

red to the same direction.

Interesting Property
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E0
red = -866 mVE0

ox = 952 mV E0
ox = 808 mVE0

red = -919 mV

1: twisted 5: non-twisted

ΔE = 1871 mV ΔE = 1674 mV

Magdesieva, T. V. et al. Electrochim. Acta 2018, 260, 459.



Torsion Angle
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O-N-C-C torsion angle (θ)

Torsion angle θ depends on

• Position of substituents

• Electronic property of substituents 

: θ is larger. -> conjugation is less.

Magdesieva, T. V. et al. Electrochim. Acta 2018, 260, 459.



Relationship Between θ and Redox Potential
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• Plotted E0
ox+E0

red vs Σ(σp+σocosθ)

• Such σo was determined that makes R2 minimum.

Magdesieva, T. V. et al. Electrochim. Acta 2018, 260, 459.



3-3. α-Hydrogen Nitroxyl Radicals
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• Only acyclic and bicyclic system had 

been reported. 

• The examples aren’t abundant.

• Stable but highly encumbered.

Nitroxyl radicals with tertiary alkyl group

Conventional α-hydrogen nitroxyl radicals

Replacing Me with H for higher reactivity

New design concept Amar, M. et al. Nat. Commun. 2015, 6, 1.



Disproportionation of α-Hydrogen Nitroxyl Radicals
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Disproportionation of α-hydrogen nitroxyl radicals

• Bridgehead H inhibit the formation of nitrone. 

(Bredt’s rule)

• bridgehead H strategy isn’t 

necessarily effective. 

Amar, M. et al. Nat. Commun. 2015, 6, 1.

But...



Design Concept of α-Hydrogen Nitroxyl Radicals
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1: pushing out the substituent

• R6 push R5 away from the plane.

-> H abstraction by another molecule is inhibited.

2: 1,3-allylic strain

• Nitrone formation is disfavored due to A(1,3) strain.

New α-hydrogen 

nitroxyl radicals

Design concept

Amar, M. et al. Nat. Commun. 2015, 6, 1.



Design Concept of α-Hydrogen Nitroxyl Radicals
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3: H-C-N-O angle (Φ)

This case:

Ideal angle for C-H abstraction:

• C-H bond overlaps SOMO.

-> H abstraction is favored.

• C-H bond is orthogonal to 

SOMO.

-> H abstraction is disfavored.

Based on these concepts, improved stability of was expected.
Amar, M. et al. Nat. Commun. 2015, 6, 1.



Results 
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Stable for months.

Synthesized molecules DFT calculation

calculated reaction free energies (ΔG298, sol ,kcal mol-1)

• Disproportionation is thermodynamically favored.

-> Stability of the nitroxyl radicals is due to kinetic factors.

(H abstraction)

Amar, M. et al. Nat. Commun. 2015, 6, 1.



Potential as Catalyst
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Stahl’s conditions
(TEMPO)

• In some Nitroxides, catalytic activity is 

better than TEMPO.

Aerobic alcohol oxidation
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Further investigation

• Nitroxide 35 shows 2~3 times higher catalytic activity than TEMPO.

Amar, M. et al. Nat. Commun. 2015, 6, 1–9.

Szpilman, A. M. et al. ChemCatChem 2015, 7 (7), 1129.



4. Summary
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• Reactivity and stability of nitroxyl radical can be tuned by the 

parameters here and maybe by other parameters.

• The examples of the use of fine-tuned nitroxyl radicals aren’t many, 

so the best design of nitroxyl radicals for the purpose could 

improve the efficiency.



Appendix: Cyclic Voltammetry

43Dempsey, J. L. et al. J. Chem. Educ. 2018, 95 (2), 197.

Caution

<- The direction of x 

(potential) and y (current) 

axis is inversed with the 

figures in this seminar. 


