

Physical Properties of Fluorine

Table 2. van der Waals Radii and Pauling Electronegativities¹⁰

	van der Waals radius (Å)	Pauling electronegativity
С	1.70	2.55
Н	1.20	2.20
F	1.47	3.98
0	1.52	3.44
Ν	1.55	3.04
Cl	1.75	3.16

- Its van der Waals radius is closer to that of oxygen as is its electronegativity
- The strongly electron withdrawing nature of fluorine substitution is especially evident in its effect on <u>the acidity</u> of neighboring functional groups.

Changes in pKa can have effects on a number of different parameters in lead optimization including physicochemical properties (solubility, log *D*), binding affinities (potency, selectivity), and <u>absorption, distribution,</u> <u>metabolism, excretion (ADME)</u>.

Difluomethy	lation (introduc	tion)	
The increased ac formation of F ₂ C	cidity of XF ₂ C-H com X ⁻	pared to XFHC-H facili	tates the
Nuc-H	CICF ₂ H,	Nuc-CF	2 <mark>2</mark> H
Nuc-H	Zn(CF ₃)Br, Cd(C	F ₃)₂, Bi(CF ₃)₃/AICI₃,	Nuc-CF ₂ H
phenol, th	iophenol		
All of which reac	t through difluoroca	<u>rbene intermediates.</u> direct introduction of a	a "CF ₂ H+"
building blo	ock is yet to be repor	ted.	22

Aryl-CF₃ Bond-Forming Reductive Elimination (1)

Aryl-CF₃ Bond-Forming Reductive Elimination (5)

Sanford, M. S. *et al. JACS.* **2011**, *133*, 7577. Sanford, M. S. *et al. JACS*. **2010**, *132*, 2878.

The most significant, conceptual advances over the past decade in the area of fluorination were made in the reactions that led to the formation of C-F and C-CF₃ bonds, most prominently by organo- and transition-metal catalysis.

The most challenging transformation remains the formation of the parent C-F bond, primarily due to 1. the high hydration energy of fluoride,

- 2. strong metal–fluorine bonds,
- 3. and the highly polarized nature of bonds to fluorine.

Fluorination reactions still lack general predictability and practicality.

Small Summary (3)

Despite these limitations, modern fluorination methods have made fluorinated molecules more readily available than ever before.

In particular, the modern methods have started to have an impact on research areas that do not require large amounts of material, <u>such as drug discovery</u> and <u>PET</u>.

The ideal fluorination reaction would be predictable, general, and functional-group tolerant, and a readily available, inexpensive catalyst.

44

References	
T. Ritter, et al. Angew. Chem. Int. Ed. 2013 , 52, 8214. W. K. Hagmann, <i>J. of Med. Chem</i> . 2008 , <i>51</i> , 4359. K. J. Hodgetts, et al. Annual Reports in Medicinal Chemistry 2010 , 45, 429).
	45

Metabolic Stability (Experimental Date)

$\begin{array}{c cccc} {\rm compd} & {\rm release } {\rm EC}_{50} (\mu {\rm M}) & {\rm release } {\rm max } {\rm efficacy}^a & {\rm dose, vehicle}^b & {\rm peak}^c & {\rm durations}^c \\ 1 \ ({\rm linopirdine}) & 4.5 \pm 1.24 & 337\% \ {\rm at} \ 10 \mu {\rm M} & 20, \ {\rm methocel} & 117 \pm 36 & 140 \\ 10, \ {\rm methocel} & 65 \pm 13 & 80 \\ 5, \ {\rm water} & 50 \pm 16 & 20 \\ 2 & 4.12 \pm 2.28 & 725\% \ {\rm at} \ 10 \mu {\rm M} & 10, \ {\rm methocel} & 1{\rm A} \\ 3 & 0.45 \pm 0.12 & 600\% \ {\rm at} \ 10 \mu {\rm M} & 10, \ {\rm methocel} & 1{\rm A} \\ 10, 0 \pm 10.1 & 433\% \ {\rm at} \ 10 \mu {\rm M} & 10, \ {\rm methocel} & 27 \pm 31 & 100 \\ 5, \ {\rm water} & 127 \pm 31 & 100 \\ 5, \ {\rm water} & 127 \pm 31 & 100 \\ 5, \ {\rm water} & 18 \pm 15 & {\rm NSP} \\ 4 & 10.0 \pm 10.1 & 433\% \ {\rm at} \ 10 \mu {\rm M} & 10, \ {\rm methocel} & 27 \pm 38 & {\rm NSP} \\ 5 & 1.08 \pm 0.2 & 317\% \ {\rm at} \ 10 \mu {\rm M} & 10, \ {\rm water} & 52 \pm 10 & >40 \\ 5, \ {\rm water} & 47 \pm 32 & {\rm NSP} \\ 6 & 0.41 \pm 0.23 & 452\% \ {\rm at} \ 10 \mu {\rm M} & 10, \ {\rm methocel} & 75 \pm 12 & 100 \\ 7 & 15.2 \pm 6.67 & 326\% \ {\rm at} \ 10 \mu {\rm M} & 10, \ {\rm methocel} & 75 \pm 12 & 100 \\ 7 & 15.2 \pm 6.67 & 326\% \ {\rm at} \ 10 \mu {\rm M} & 10, \ {\rm methocel} & 74 \pm 29 & 120 \\ 9 & 0.83 \pm 0.28 & 413\% \ {\rm at} \ 3 \mu {\rm M} & 1, \ {\rm methocel} & 74 \pm 29 & 120 \\ 0.5, \ {\rm methocel} & 115 \pm 27 & >120 \\ 0.5, \ {\rm methocel} & {\rm int} \ 2.4 & {\rm int} \ 2.5 & 10 \\ 9 & 0.83 \pm 0.28 & 413\% \ {\rm at} \ 3 \mu {\rm M} & 1, \ {\rm methocel} & 115 \pm 27 & >120 \\ 0.5, \ {\rm methocel} & {\rm int} \ 4.5 & {\rm methocel} \ 10.24 & {\rm methocel} \ 10.25\% \ {\rm methocel} \ {\rm mothol} \ {\rm mothol} \ {\rm muthol} \ {\rm muthol}$		in vitro ACh release EC ₅₀ (µM)	in vitro ACh release max efficacy ^a	in vivo microdialysis ACh release (po)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	compd			dose, vehicle ^b	peak ^c	duration ^d
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 (linopirdine)	4.5 ± 1.24	337% at 10 µM	20, methocel	117 ± 36	140
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				10, methocel	65 ± 13	80
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5, water	50 ± 16	20
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2	4.12 ± 2.28	725% at 10 µM	10, methocel	IA	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	0.45 ± 0.12	600% at 10 µM	10, water	127 ± 31	100
4 10.0 ± 10.1 433% at 10μ M 10 , methocel 27 ± 38 NSP 5 1.08 ± 0.2 317% at 10μ M 10 , water 52 ± 10 >40 5 0.41 ± 0.23 452% at 1μ M 5 , water 47 ± 32 NSP 6 0.41 ± 0.23 452% at 1μ M 5 , methocel 75 ± 12 100 7 15.2 ± 6.67 326% at 10μ M 10 , methocel 201 ± 68 >80 8 1.60 ± 0.95 440% at 3μ M 5 , methocel 201 ± 68 >80 9 0.83 ± 0.28 413% at 3μ M 1 , methocel 74 ± 29 120 9 0.83 ± 0.28 413% at 3μ M 1 , methocel 115 ± 27 > 120 0.5 , methocel 100% , at the dose specified; determined as described previously. ⁴⁷ b Doses in mg/kg; methocel, compended in 25\% methocel in water and bead-milled overnight. ^c Percent increase over control, control = 0; IA, inactive. ^d Nun iscentive minutes at significance; NSP, no significant points. a				5, water	18 ± 15	NSP
5 1.08 ± 0.2 317% at 10μ M 10 , water 52 ± 10 >40 5, water 47 ± 32 NSP 6 0.41 ± 0.23 452% at 1μ M 5, methocel 75 ± 12 100 7 15.2 ± 6.67 326% at 10μ M 10 , methocel 44 ± 32 NSP 8 1.60 ± 0.95 440% at 3μ M 5 , methocel 201 ± 68 >80 9 0.83 ± 0.28 413% at 3μ M 1 , methocel 74 ± 29 120 9 0.83 ± 0.28 413% at 3μ M 1 , methocel 115 ± 27 >120 9 0.83 ± 0.28 413% at 3μ M 1 , methocel 10 ± 21 NSP Percent control, control = 100% , at the dose specified; determined as described previously. ⁴⁷ b Doses in mg/kg; methocel, contropended in 25\% methocel in water and bead-milled overnight. ^e Percent increase over control, control = 0; IA, inactive. ^d Nunsecutive minutes at significance; NSP, no significant points. 414% 414% 413% 413% 413% 413% 413% 413% 413% 413% 413% 413% 413% 413% 413% 413% 413% 413	4	10.0 ± 10.1	433% at 10 µM	10, methocel	27 ± 38	NSP
6 0.41 \pm 0.23 452% at 1 μ M 5, methocel 75 \pm 12 100 7 15.2 \pm 6.67 326% at 10 μ M 10, methocel 44 \pm 32 NSP 8 1.60 \pm 0.95 440% at 3 μ M 5, methocel 201 \pm 68 >80 9 0.83 \pm 0.28 413% at 3 μ M 1, methocel 115 \pm 27 >120 9 0.83 \pm 0.28 413% at 3 μ M 1, methocel 10 \pm 21 NSP a* Percent control, control = 100%, at the dose specified; determined as described previously. ⁴⁷ b Doses in mg/kg; methocel, conspended in 25% methocel in water and bead-milled overnight. c Percent increase over control, control = 0; IA, inactive. d Nunsecutive minutes at significance; NSP, no significant points.	5	1.08 ± 0.2	317% at 10 µM	10, water	52 ± 10	>40
6 0.41 ± 0.23 452% at 1μ M5, methocel 75 ± 12 100 7 15.2 ± 6.67 326% at 10μ M 10 , methocel 44 ± 32 NSP8 1.60 ± 0.95 440% at 3μ M5, methocel 201 ± 68 > 809 0.83 ± 0.28 413% at 3μ M1, methocel 74 ± 29 120 9 0.83 ± 0.28 413% at 3μ M1, methocel 115 ± 27 > 120 0.5, methocel 40 ± 21 NSPa Percent control, control = 100%, at the dose specified; determined as described previously. ⁴⁷ ^b Doses in mg/kg: methocel, comspended in 25\% methocel in water and bead-milled overnight. ^c Percent increase over control, control = 0; IA, inactive. ^d Nunsecutive minutes at significance; NSP, no significant points.				5, water	47 ± 32	NSP
7 15.2 ± 6.67 326% at 10μ M 10 , methocel 44 ± 32 NSP8 1.60 ± 0.95 440% at 3μ M 5 , methocel 201 ± 68 >809 0.83 ± 0.28 413% at 3μ M 1 , methocel 74 ± 29 120 9 0.83 ± 0.28 413% at 3μ M 1 , methocel 115 ± 27 > 122 0.5 , methocel 100% , at the dose specified; determined as described previously. ⁴⁷ b Doses in mg/kg; methocel, component of 100% , at the dose specified; determined as described previously. ⁴⁷ b Doses in mg/kg; methocel, component of 125% methocel in water and bead-milled overnight. c Percent increase over control, control = 0; IA, inactive. d Number of 125% methocel in water and bead-milled overnight. a Percent winnutes at significance; NSP, no significant points. a Percent increase over control, control = 0; IA, inactive. d Number of 100% , 100	6	0.41 ± 0.23	452% at 1 µM	5, methocel	75 ± 12	100
8 1.60 ± 0.95 440% at 3 μ M 5, methocel 201 ± 68 >80 1, methocel 74 ± 29 120 9 0.83 ± 0.28 413% at 3 μ M 1, methocel 115 ± 27 >124 0.5, methocel 40 ± 21 NSP ^a Percent control, control = 100%, at the dose specified; determined as described previously. ⁴⁷ ^b Doses in mg/kg; methocel, conspended in 25% methocel in water and bead-milled overnight. ^e Percent increase over control, control = 0; IA, inactive. ^d Nunsecutive minutes at significance; NSP, no significant points.	7	15.2 ± 6.67	326% at 10 µM	10, methocel	44 ± 32	NSP
9 0.83 ± 0.28 413% at $3 \mu M$ $\frac{1}{1}$, methocel 74 ± 29 120 1 , methocel 115 ± 27 > 121 0.5 , methocel 40 ± 21 NSP ^a Percent control, control = 100%, at the dose specified; determined as described previously. ⁴⁷ ^b Doses in mg/kg; methocel, control spended in 25% methocel in water and bead-milled overnight. ^e Percent increase over control, control = 0; IA, inactive. ^d Num secutive minutes at significance; NSP, no significant points.	8	1.60 ± 0.95	440% at 3 µM	5, methocel	201 ± 68	>80
9 0.83 ± 0.28 413% at 3 μ M 1, methocel 115 ± 27 >120 0.5, methocel 40 ± 21 NSP ^a Percent control, control = 100%, at the dose specified; determined as described previously. ⁴⁷ ^b Doses in mg/kg; methocel, com spended in 25% methocel in water and bead-milled overnight. ^c Percent increase over control, control = 0; IA, inactive. ^d Num necutive minutes at significance; NSP, no significant points.				1, methocel	74 ± 29	120
$0.5, \text{ methocel} \qquad 40 \pm 21 \qquad \text{NSP}$ ^a Percent control, control = 100%, at the dose specified; determined as described previously. ⁴⁷ ^b Doses in mg/kg; methocel, con- spended in 25% methocel in water and bead-milled overnight. ^c Percent increase over control, control = 0; IA, inactive. ^d Num- nsecutive minutes at significance; NSP, no significant points.	9	0.83 ± 0.28	413% at 3 µM	1, methocel	115 ± 27	>120
^{<i>a</i>} Percent control, control = 100%, at the dose specified; determined as described previously. ⁴⁷ ^{<i>b</i>} Doses in mg/kg; methocel, conspended in 25% methocel in water and bead-milled overnight. ^{<i>c</i>} Percent increase over control, control = 0; IA, inactive. ^{<i>d</i>} Nunsecutive minutes at significance; NSP, no significant points.				0.5. methocel	40 ± 21	NSP
	spended in 25% me isecutive minutes a	at significance; NSP, no significance	milled overnight. ^c Percent in gnificant points.	crease over control, co	ntrol = 0; IA, inac	ctive. ^a Numbe
4						
A1						

