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Background: Inner- or outer-sphere model
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Inner-sphere model
V' Preferred if the spin is majorly on Cu
ATransmetallation is difficult with bulky nucleophiles
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Outer-sphere model
v'No need of Nu coordination to the metal center
v/ Reactive site of the metal complex is spatially accessible.
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o (B-, Al-containing molecules)

BA = Bronsted acid

M = Zn, Pd (N-, S-, O-containing molecules)
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Fig. 1 The relevance of first and second coordination sphere effects in transition metal catalysis. (a) Schematic representation of the first coordination
sphere in a transition metal catalyst. (b) DNA-inspired hydrogen bonding features in the second coordination sphere of a transition metal catalyst to exert
control on the reactivity. (c) Several examples of unconventional interactions that control the activity and selectivity in transition metal catalysts through
the second coordination sphere. This type of interactions can be used for ligand self-assembly (d) or substrate pre-organization (e).

Beyond hydrogen bonding: recent trends of outer sphere interactions in transition metal catalysis
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DFT calculations
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Background: Recent studies for enantioconvergent azidation 29

Halogenophilic SN2X strategy (DKR) (2020)
*Only example of alkylhalide substitution

Y New SN,X mechanism This work
A Use of less general a-cyanoacetates Y Quaternary stereocenter
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Reaction and ligand optimization
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Quaternary azidation was accomplished.
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Synthetic applications

12 moft (S)-L8 or (A)}L8 o= Ao X=—=2
N o 2.0 oquiv. Zn, 1.0 equiv. RS .
X Ry Loe et o o _rom, ST W —— e o
MoCH {0.2 M), 35 °C, 3-12 h A A o d 20 oquiv. DIPEA g
a7 ot 4 g A o Py \[ —— Srandard condon' —=  E0, N o £0,C A
sen sa-108 L Ba Toksene, 120°C
dlaSLclcu:u:lC\.uvc control e e
" e 0am) 1210 g 8% .
o - — NN gl Wi
e s . 0
NHPMP NHP P c
NP PP @ 0:Pc D (X PuPHN, P O s P W Standard conaions® ¥y, K,
P Yooy i Veose o e e, B0 Ao ey e e
M CNH o Nbey Pr N C0LE 1.5 equiv. KO'Bu o
(S)-L8: 94, 01%, (5)-L8: 95, B2%. o >20:1 d.r. (5-L8: 96, 86%, o, >20:1 A1, (5)-L8: 97, 91%, oL 52011 dr, e =] -'El
Pl o, s D PR e, b, 52 e e st " N - E—
.
oo )
mo—L]o = ‘ Y
! 820, OBz 820, o8z . 10 mo# ‘vC . 12-'\-5! Ls PP,
" “
os .
P YCO,Pr Yoo, Pr Ry P -
P mu.m st L8 100,70% o o2t L 10,9150 520
' 2un
[rA— PE—— [EEP———— P
oF 2 7 7
xe o, O
o . 0, S . o, ., . e,
AcO: 0, PO 0 0
AeO. PO - PrO: N LN LN
Arenp rrwe e @ Mo By L) He n D Ve B |t n
i Yoo Pr P Vo0, Pr Ll P vCoPr e F
(5118 02,8, 5201 1. (518 100,815,520 (L8104 8 0 20 (1L 108, 80, 5201 . 198,025 09% 0. 2201 dr. 17,845, 05% 00, 2201 e 118,500% % ne. 201 e, “
(Ao, 5. o (AL 108, 0055201 . (O S o dr (ALK 108, T, 5201 e o
T, ° L [ a—
7 P, P
PP, ~, PP, Ny [ N
[ 0, M - N N Sy~ = V2l
Ay R Ohe 0 N N =7 Ny | o B . Nzr'-al
A0 o, 0B DX e By By N~
Acd q Y o % > ™ # o V!
"
A o9 oy 0w I I <
R G, - soybo . otes ' o o
o Br f - %, . "
106, 650, e sz grs P O oo P O Py B J 120555 o0can scovar. cooozmr
o ki from (SHslbuprcton  PH TCOSPr
- "
o
Wit o,
'~ [ -
(4 0 . P e : o
- = (T
R N M7 L. Useful bioisosters
Mel . o
o Y Potential application to glycopeptide therapeutics

eyl
e cogPr

ol
P

o8z
e o
o
oy
100,00% 0 =20 de. PR YCOy

11,95%, 0 3201 d.
from hyodeorychoic sckd

Y Rare examples of glycosyl addition via cross-coupling
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B. Direct C2-functionalization of carbohydrates via 1,2-RAM
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O-glycosylation
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+ O-glycosides are obtained by different reaction condition.

* B-selective glycosylation.
« Stereo inversion of a-glycosyl iodide.
Ming Joo Koh. et al. Nature. 2024, 631, 319.; Alexander D. Dilman. et al. Angew. Chem. 2021, 5, 565
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