Biological Applications of Chemiluminescence

B4 Hiroki Umeda 2021/12/15

Overview

CHEMILUMINESCENCE (CL)

Biological Application

BIOIMAGING

PHOTODYNAMIC THERAPY

Contents

- **■** Basic Information on Chemiluminescence
- **■** Application for Bioimaging
- **■** Application for Photodynamic Therapy
- **■** Mini-proposal
- **Summary**

Contents

- **■** Basic Information on Chemiluminescence
- **■** Application for Bioimaging
- **■** Application for Photodynamic Therapy
- **■** Mini-proposal
- **■** Summary

Chemiluminescence

Chemiluminescence (CL):

the emission of light as a result of chemical reaction

A
$$(+B) \rightarrow C^* \rightarrow C + h\nu$$
 (eq.1)

- ✓ No excitation light required
- **X** Poor CL efficiency

$$\Phi_{CL} := \frac{moles\ of\ photons\ emitted}{moles\ of\ reactants}$$
 (eq.2)

	Type	Фсь
Firefly	BL	0.8
Sea firefly	BL	0.3
Luminol	CL	0.04
Ordinary compounds	CL	$10^{-8} \sim 10^{-3}$

High-energy intermediate

Luminescence process of firefly luciferin

→ contribution of high-energy intermediate containing dioxetane moiety

1,2-dioxetanone

1,2-dioxetane

1,2-dioxetandione

Representative Mechanism

CIEEL (Chemically Initiated Electron Exchange Luminescence)

CTIL
(charge-transfer-induced luminescence)

ET: electron transfer

BET: back electron transfer

Contents

- **■** Basic Information on Chemiluminescence
- **■** Application for Bioimaging
- **■** Application for Photodynamic Therapy
- **■** Mini-proposal
- **■** Summary

Motivation

Drawbacks of near infrared fluorescence (NIRF) imaging:

- Autofluorescence

 Excitation light also excites other endogenous fluorophores.
- Excitation Leakage

 Excitation light close to the fluorescence wavelength can't be filtered out.
- Stronger signals at shallow locations
 Intense light at shallow locations results in a strong signal, including noise.
- Short excitation wavelength

 Due to Stokes shift, excitation light should be shorter than fluorescence.
- → Low signal to noise ratio (SNR), Poor tissue penetration

CL imaging (w/o the need for excitation light) can solve these problems!

Challenges

Challenges of chemiluminescent (CL) imaging:

A) Narrow Substrate Scope

Only some substrates, such as **ROS**, can make high-energy intermediates.

B) Weak CL brightness

Quantum yield of CL (Φ_{CL}) is low and difficult to detect.

C) Short wavelength

Short-wavelength light has poor tissue permeability.

Ex.) Luminol reaction

Schaap's dioxetane

The energy source is in the molecule from the beginning.

→ It can be adapted to any substrate as long as the trigger group can be deprotected.

Shabat's dioxetane

Electron-withdrawing group (EWG) was introduced at the ortho position of the phenol in Schaap's dioxetanes (= skeleton A) → Redshift of wavelength and increase in quantum yield (Φcl)

Probe examples

H₂S CL Probe

Formaldehyde CL Probe

Cathepsin B CL Probe

Applicable to in vivo imaging

Lippert, A. R. et al. Chem. Sci. **2015**, 6, 1979-1985. Shabat, D. et al. Angew. Chem. Int. Ed. **2017**, 56, 15633–15638. Shabat, D., Chang, C. J. et al. Angew. Chem. Int. Ed. **2018**, 57, 7508–7512.

New type probe

The limitation of Schaap's or Shabat's dioxetane:

Only applicable for substrates that can trigger phenol deprotection

New type probe:

Switching mechanism

(No need to deprotect phenol)

Mechanism

ADLumin-1:

- Probe for aggregated Amyloid-β (Aβ)
- Auto-oxidation is primary cause of CL
- ADLumin-3 release photons only when binding to Aβ

Moiety A: Chemiluminescent response site

Moiety B: Binding site

Tentative Mechanism:

non-radiative deactivation

Ran, C. et al. Nat. Commun. 2020, 11, 4052

In vitro/vivo CL imaging

- **∨** Selective amplification for Aβ
- ✓ BBB permeability

X Wavelength of emission is short

CRET

CRET(Chemiluminescence resonance energy transfer): Nonradiative energy transfer process

from CL skeleton (Donor) to Fluorophore (Acceptor)

→ Longer wavelength, larger ΦcL

[Requirements]

- Spectral Overlap (between Em of D and Abs of A)
- Proximity (normally <10nm)

Ex.) Fluorescein tethered dioxetane

w/o Fluorophore: $\lambda = 470$ nm, $\Phi_{CL} = 0.0033\%$

→ CRET Probe: λ =714nm, Φ cl=0.38%

DAS-CRET

DAS-CRET(Dual-amplification of signal via CRET): CRET by 2 molecules that amplify the signal upon Aβ binding

Donor: ADLumin-1 (CL probe)

Accepter: CRANAD-3 (NIRF probe)

DAS-CRET In vitro Imaging

CRET is feasible in both pure solution and brain homogenate (Longer wavelength (NIR) was achieved)

DAS-CRET In vivo Imaging

CRET in vivo Imaging is feasible in brain

- **✓** Selective amplification for Aβ
- **∨** BBB permeability
- + ✓ Longer wavelength (NIR)

Perspective

 New CL probe based on switching mechanism may broaden the target substrates of CL imaging.

 In particular, application for other aggregating-prone proteins should be easier.

 Monitoring of Aβ concentration by ocular imaging could be clinically useful.

Ran, C. et al. Nat. Commun. 2020, 11, 4052.

Contents

- **■** Basic Information on Chemiluminescence
- **■** Application for Bioimaging
- **■** Application for Photodynamic Therapy (PDT)
- **■** Mini-proposal
- **■** Summary

Photodynamic therapy (PDT)

Concept:

PS: Photosensitizer

- ✓ Fewer side effects due temporospatial regulation
- X Only for localized and superficial tumor

CL initiated PDT

✓ Accessibility to deep location of the body

CL initiated PDT with Luminol

Strategies using luminol have been widely studied:

- ✓ in vivo CL initiated PDT was achieved
- **X Concern about cytotoxicity to healthy cells**Intratumoral injection (not i.v.)

HeLa cell tumor of nude mice (intratumoral injection)

Unimolecular system for CL initiated PDT

Unimolecular system:

Low required concentration & Ease of delivery

→ Smaller side-effect is expected.

Intramolecular CRET

Akkaya, E. U. et al. ACS. Omega. **2017**, 2(4),1367-1371. Algi, F. et al. ACS Appl. Bio Mater. **2021**, 4(6), 5090-5098. da Silva, L. P. et al. Eur. J. Med. Chem. **2019**, 183, 111683.

Molecular Design

Mother Skeleton:

Coelenterazine containing Imidazo[1,2-a]pyrazine-3(7H)-one

Reaction

Mechanism and energetics of the S₀ states (kcal/mol):

@Tumor tissue (pH= $4.5\sim5.0$)

@Nomal tissue (pH=7.4)

Dual tumor selectivity

- Acidic pH
- overexpression of superoxide anion

Confirmation of PS function

In vitro Cytotoxicity

Perspective

- There are many issues to be resolved.

 Toxicity to normal tissue, inefficient CL, self-aggregation, hypoxia
- Need an integrated approach to solve problems.
- It is expected that various approaches will be taken for practical use.

Contents

- **■** Basic Information on Chemiluminescence
- **■** Application for Bioimaging
- **■** Application for Photodynamic Therapy
- **■** Mini-proposal
- **Summary**

Summary

 The biological applications of CL were discussed from 2 aspects: imaging and PDT

CRET is an important strategy in both.

Imaging: High Ocl, long wavelength

PDT: Internal light source of PS

 New diagnostic and therapeutic methods will be developed by CL imaging probes or CL initiated PDT

Thank you for listening! 0-0

