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Introduction

Photodynamic therapy Investigating cell biology Protein bioconjugation
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Photosensitization Photoredox catalysis

Visible-light-driven catalysis has a tremendous impact on chemical synthesis,
nanotechnology, energy and biological sectors.

O. Fedeyi, et al. Nat. Rev. Chem, 2021, 5, 322.  °



Proximity protein labelling

Localized 'antenna’
protein or catalyst

® U reactive
intermediate

Small molecule

N

Proximity labelling enables
scientists to study proteins at a
specific locus

Cells contain millions of proteins
- too many to analyze accurately

v Protein-protein interactions (PPls), in which many proteins interact with other
proteins, are important.

v Weak PPIs have until remained almost undetectable.

v Proximity protein labeling is one way to obtain information about PPIs.

D. Macmillan, et al. Chem. Soc. Rev. 2021, 50, 2911.



What is proximity protein labeling?

v Proximity labelling is the localization of

a small molecule or protein that can
generate a reactive intermediate.

Vv Reactive intermediates cross-link with
proteins.

v Extracted proteins can be analyzed by
immunoblotting and chemoproteomic

analysis

Key issue
v labeling radius

v labeling time
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Horseradish peroxidase (HRP)
APEX, APEX2, SPPLAT

spectator
protein

¥, Tyrosyl radical

diffusion

H205

oxo-ferryl heme radical cation

Iron(Il) is oxidized by hydrogen peroxide to
become iron (1V).

Water and oxoferyl (FelV) radical cations are
generated via peroxo iron species.

4

This species is then reduced by phenol to neutral
oxoferryl to produce phenoxyl radicals.

v

Phenoxy radicals crosslink with tyrosine and
nucleic acids.

D. Macmillan, et al. Chem. Soc. Rev. 2021, 50, 2911.



Protein proximity labeling

Method

Substrates

Labeling
time

strength

limitations

APEX | APEX, |Biotin phenol | =1 min | High temporal resolution | H,0, toxicity
APEX2 | (BP), H,0, High activity BP permeability
BiolD |BiolD2 | Biotin, ATP 18 h Non-toxic Poorly reactive
stable at higher Low temporal control
temperatures Wide labeling radius
AirlD 3h
TurbolD = 10 min | Highest activity

cf. Takahashisan’s proposal seminar
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Microenvironment mapping

Design Objective

Spatially precise
microenvironment
labeling

protein on cell surface

State-of-the-Art

Ar—0O -

T2 = 0.1 ms

Resolution
determined by
reactive intermediate
half life (T]/z)

Application: Large cellular assemblies

catalyst
v tolerant of aqueous conditions

v conjugate to antibodies, DNA, small ligand
v selectively activate chemical probes at a diffusion-
limited rate

Proximity Labeling

uMap

Bioinformatics

tight labeling radius precise interaction network

This Work
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precise

Application: Microenvironment Mapping

chemical probe

v activated within 1 nm of the catalyst radius

v not to undergo long-range diffusion after
activation

D. Macmillan et al. Science. 2020, 367, 1091."



Carbene
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Carbene
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Photocatalyst

B
N=N H OH
Catalyst Optimized Catalyst (3)
FiC > FC
3 15 min
1 NH;* Blue LED
Catalyst Conversion  Er (kcal) Eqp(0x)

[Ir(dFCF3ppy)2(dtbbpy)]* (2)  100% 60.1 1.21

Blue LEDs only 0% = =

Ir(ppy)a 0% 55.2 0.31
[RU(pr)3](PF5)2 0% 48.4 1.45

v [Ir(dFCF3ppy)2(dtbbpy)]PF6(E; = 60.1 kcal/mol) is the best photocatalyst.

v Iridium photocatalyst(3) aimed at biomolecular applications did not affect ability

to remove nitrogen. D. Macmillan et al. Science. 2020, 367, 1091.14



Dexter energy transfer vs Forster energy transfer
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v No overlap was observed between the absorption spectrum of 1 and
the emission spectrum of 2.

v It was suggested that it was a Dexter energy mechanism rather than

a Forster energy transfer.
D. Macmillan et al. Science. 2020, 367, 1091.



Protein labeling
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v Turning the light source on or off affords fine temporal control over the labeling process.
D. Macmillan et al. Science. 2020, 367, 1091."



Selective proximity protein labeling

A Selective Antibody-Targeted Labeling of Bead-Adsorbed Proteins
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v EGFR2/VEGFR2 was selectively labeled when irradiated with 450 nm light.
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v When CD45-targeted pMap was performed on Jurkat cells, light- and time-dependent
protein biotinylation was observed.

D. Macmillan et al. Science. 2020, 367, 1091.17



HMAP proteomics

Could pMap differentiate between spatially separated microenvironments
on the same cell membrane?

C \Validation: CD45, CD47, and CD29 Targeted uMap Proteomics
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v The ability of pMap discriminate between unrelated microenvironments.

D. Macmillan et al. Science. 2020, 367, 1091.18



PD-L1

They investigate the proximal protein interactome of PD-L1 in B cells.

E Application: Discovering Protein Neighbors in the PD-L1 Microenvironment

LSAMP
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v It was found that CD30 (a member of the tumor necrosis factor receptor family) and CD300A
(an immunosuppressive receptor), may have a new interaction due to significant enrichment.

v Potential of mMapping provides new insights with respect to the microenvironments of
checkpoint proteins. D. Macmillan et al. Science. 2020, 367, 1091



Intercellular communication

A Trans or Cis Labeling with uMap via Intra/Extrasynaptic Targeting
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v Understanding intercellular communication is important.

v Does biotinylation of the surface of APCs expressing PD-L1 (cis labeling) lead
not only to biotinylation of T cells at adjacent synapses (trans labeling)?

D. Macmillan et al. Science. 2020, 367, 1091.20



Intercellular communication

Trans labeling

B Trans Labeling with a-PD-L1 uMap
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PDL1-targeted pMap showed high
selectivity for trans-labeling solely at the
cis- and trans-cellular contact regions.

Cis labeling
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CD45RO-targeted pMap led to selective
cislabeling on the CD45R0O-expressing
Jurkat cells.

D. Macmillan et al. Science. 2020, 367, 1091.21



Target ID

Small molecule
drug candidate
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Target Identification
leads to higher success
rate in clinic

3

Unknown protein
interaction

a0

\’a

Phenotype
cell death,
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Photoaffinity
labelling (PAL)
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UV light O
P .

P &£ @
M.

Stoichiometric
diazirine
probe

=99% insertion into water

poor signal-to-noise

time consuming
and costly

One labelling event
possible per probe

v Target ID remains a fundamental goal in drug discovery.

D. Macmillan et al. bioRxiv preprint.
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Design of photocatalyst

Geri et al. Science (2020) This work: —— Halotag cell permeability assay (HEK293T) —
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D. Macmillan et al. bioRxiv preprint. -



(+)-JQ128

— Labelling of recombinant CA & BRD4 — — |ntracellular labelling in HeLa cells —
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D. Macmillan et al. bioRxiv preprint. -



(+)-JQ128
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v Some BRD proteins are the most enriched.
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BRD3 *

3, -2 0 =
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v ALCAM (CD166) was also identified as being significantly enriched, but currently has no

reported interaction with (+)-JQ1.

v CD166 was detected it was not enriched, indicating that binding may not be affected by

the stereogenic center.
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Classical photoaffinity labeling

State-of-the-art UV photoaffinity labelling using JQ1-Dz-alkyne
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No conclusive target ID by quantitative chemoproteomics using state-of-the-art photoaffinity labelling

Western blot and chemoproteomic analysis showed that the BRD protein was not enriched.

D. Macmillan et al. bioRxiv preprint.



desHEP-Dasatinib
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v Interactions with several established kinases, including Src and Lyn, have been identified.

v They identified an off-target multidrug resistance transporter, ABCC1.

D. Macmillan et al. bioRxiv preprint. o



Dasatinib

Dasatinib-Gen 2-Ir (4)
full length conjugate

Dasatinib-G2 (4) functional assay

C 18h DMSO Das Das-G2
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phospho-Abl I '

v Iridium photocatalyst adapted to maintain
biological function and cell permeability.

v Well-known kinases such as p38a, Myt1, and
CSK kinases were extensively enriched.

v The most recent optical affinity labeling was

that CSK, BTK and MAP were slightly enriched.
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D. Macmillan et al. bioRxiv preprint.
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Paclitaxel

pMap target ID of microtubules using paclitaxel-G2-iridium conjugate
8=

Paclitaxel-Gen 2-Iridium conjugate (6)

Paclitaxel-G2 vs Ir(dFCF3)(dMebpy)*
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v The anti-cancer mechanism of Paclitxel (Taxol) is not clear.

v Western blot analysis using anti-a-tubulin clearly labeled the target protein compared to
free iridium and DMSO.

v Tubulin isotypes ala, blll, blVb, and alc were found to be extensively labeled.

D. Macmillan et al. bioRxiv preprint. -



SCH58261
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D. Macmillan et al. bioRxiv preprint. v



Summary

v A new mapping technology has been developed to replace APEX and BiolD.

v HMap enables exploration of protein-protein interactions and
intercellular communication.

v uMap targetID has allowed for the identification of multiple protein
taegets across multiple drug classes and compartments.



