Photoredox Synthesis of Amines

2024.05.02 Literature Seminar M1 Hiroki Kanamori

Importance of amines

Methods for the synthesis of amines

Hoffman alkylation (1850 ~)

 \times overalkylation

 \times separation, atom economy

Methods for the synthesis of amines

Reductive amination

Most widely used, but ...

 \times poor reactivity in the case of sterically encumbered amines

 \times over-reaction in the case of small, nucleophilic amines, and simple aldehydes

 \times toxic byproducts

amide/nitrile reduction

 \times challenging workup procedures

 $\times\,$ reactive aluminum hydrides with Lewis or Brønsted acids

Photoredox synthesis of β -amino ether

the first example of photocatalytic α -amino radical generation

photoredox & thiol catalyst

\rightarrow development of photocatalytic synthesis of amines

Dominik Hager, and David W. C. MacMillan J. Am. Chem. Soc. 2014, 136, 49, 16986–16989

Contents

- 1. Introduction
- 2. Enantioselective photocatalytic reaction
- 3. Carbonyl alkylative amination
- 4. Reductive amination

Enantioselective photocatalytic reaction

Ooi (2015)

absolute stereocontrol synergistic catalysis visible light

*P-s*piro chiral aminophosphonium salts

a new class of organocatalysts

excellent yields & outstanding stereoselectivity structurally modifiable readily accessible

D. Enders and T. V. Nguyen. Org. Biomol. Chem. 2012, 10, 5327

Chiral catalyst design

barfate

- charged Brønsted acid catalyst
- \rightarrow efficient acidity to protons
- double H-bond donor
- positive charge
- \rightarrow for catalytic ion-pairing with anion radical

Comparison of H-bond donor & photosensitizer

D. Uraguchi et al. J. Am. Chem. Soc. 2015, 137, 43, 13768–13771

Substrate scope

D. Uraguchi et al. J. Am. Chem. Soc. 2015, 137, 43, 13768–13771

Enantioselectivity

entry	solvent	\mathcal{E}_{r}	yield (%)	ee (%)
1	toluene	2.38	89	94
2	Et_2O	4.33	54	93
3	THF	7.58	15	76
4	CH_2Cl_2	8.93	56	92
5	MeCN	37.5	no reaction	_

Catalytic efficiency was higher in a less coordinating solvent

2-phenyl groups

 \rightarrow cavity over the ionic H-bonding site

Contents

- 1. Introduction
- 2. Enantioselective photocatalytic reaction
- 3. Carbonyl alkylative amination
- 4. Reductive amination

Carbonyl alkylative amination

streamlined synthesis of complex tertiary amines metal-free and modular transformation abundant feedstocks

Optimization and controls

TTMSS : HAT TBSOTf : Lewis acid light : visible light

Proposed mechanism

Mechanistic study

С

Radical trap experiment

b Radical inhibition experiment

+ the reaction efficiency dropped under air

Evidence in support of the proposed mechanism

adding an alkyl radical to an iminium ion :

 $\Delta G = -6.2 \text{ kcal mol}^{-1}$

 ΔG^{TS} = + 2.7 kcal mol⁻¹

```
the length of the forming C–C bond (2.3609 Å)
```


a strong dependence on the choice of silane BDE: TTMSS 84 kcal mol⁻¹ ammonium ion 95 kcal mol⁻¹

Evidence in support of the proposed mechanism

No ring-opened product was observed

formation of an α -amino radical does not occur.

Studies into the role of visible light

- Control experiment in the dark afforded no product. Light is required for the reaction
- The reaction proceeds efficiently in the presence of 455 nm long-pass filter.

The reaction does not require high-energy UV-light

• The reaction is also operative under thermal conditions. The main role of light is thought to be to provide a room temperature initiation pathway for the silane-mediated radical chain mechanism.

The role of visible-light

Hypothesis 1 : ruled out

light-mediated homolysis of the C–I bond of the alkyl iodide Hypothesis 2 : ruled out

excited state enamine reduces alkyl iodide

Figure S3. Absorption spectra of 2-iodopropane & enamine versus the emission of the Kessil lamp. R. Kumar et al. *Nature* 2020, *581*, 415–420

The role of visible-light

R. Kumar et al. Nature 2020, 581, 415-420

The role of visible-light

Figure S5. Absorption spectra iminium ion, TTMSS and their mixture.

Figure S6. Absorption spectra of 2-iodopropane, enamine and their mixture.

New band observed

Hypothesis 6

excitation of reaction mixture (enamine, TTMSS, alkyl halide)

R. Kumar et al. Nature 2020, 581, 415-420

Contents

- 1. Introduction
- 2. Enantioselective photocatalytic reaction
- 3. Carbonyl alkylative amination
- 4. Reductive amination

Reductive amination

visible light temporal & spatial control scalable

Proposed mechanism

without AscH2 : no product formation at all

- the inefficient reductive quenching of ³MLCT-excited [Ru(bpy)3]²⁺ by MPA
- the reversible nature of the HAT between MPA and α -amino alkyl radicals

Mechanistic study

2a (1 eq.) [Ru(bpy) ₃]Cl ₂ (1 mol %) reducing agent CH ₃ OH, 1mL 470 nm blue LE	HN +		HN +			$ \begin{array}{c} & & & \\ & $
211,111	ring-retention product (<i>P</i> _{rr})	ring-o produ	opening uct (<i>P</i> _{ro})	P _{rr} : P _{ro} =		$\bigwedge H \qquad \begin{array}{c} k_2 \sim 10^7 \text{M}^{-1} \text{s}^{-1} \\ \text{HAT} \end{array} \qquad \begin{array}{c} H \\ N \\ N \\ \text{N} \end{array}$
reducing agent	3r	1d	3f	k _{rr} [H-Donor]/k _{ro}	<i>k</i> _{rr}	Ph Fil
AscH ₂ (20 mol %), MPA (3 eq., 1.5M)	41(25)%	~1%	3%	41 / (1 + 3) = 10	10 $k_{\rm ro}$ / [H-Donor] = ~ 10 ⁷ M ⁻¹ s ⁻¹	3r With ASCH ₂ 5 $k_2 \sim 10^4 - 10^5 \text{ M}^{-1} \text{s}^{-1}$
AscH ₂ (1.5 eq., 0.75M)	< 1%	16%	~1%	< 1 / (16 + 1) = 0.06	< 0.06 <i>k</i> _{ro} / [H-Donor = 8 x 10 ⁴ M ⁻¹ s ⁻¹ 10 ⁴ ~10 ⁵ M ⁻¹ s ⁻¹	$\begin{array}{c} H \\ H \\ 3f \\ 2a \\ hv \\ 1d \end{array} \begin{array}{c} H \\ N \\ Ph \\ H \\ T \\ H \\ H$

X. Guo et al. Angew. Chem. Int. Ed. 2018, 57, 2469-2473

kinetic isotope effect studies

low H/D KIE (2.3)

→ relatively low vibrational frequency of S-H bond large KIE (11.5)

 \rightarrow significant contribution of proton tunneling

DFT calculation

Summary

photoredox synthesis of amines :

- visible light
- HAT (thiol, silane)
- photocatalyst (Ir, Ru)
- stereocontrol