Mechanistic considerations for N-X bond fragmentation of pyridinium salts

2024.01.18

Literature Seminar

B4 Hiroki Kanamori

Contents

- 1. Examples of N-X bond fragmentation
- 2. Theoretical background
- 3. Model calculation

Fragmentation of pyridinium ion via single electron reduction

Pyridinium salts: Redox-Active Functional Group Transfer Reagents

N-C bond fragmentation via homolytic cleavage

Ni catalysis

photoredox catalysis

F. J. R. Klauck, et al. *Angew. Chem. Int. Ed.* **2017**, *56*, 12336–12339

C. H. Basch, et al. *J. Am. Chem. Soc.* **2017**, *139*, 15, 5313–5316 EDA complex

J. Wu, et al. *Angew. Chem. Int. Ed.* **2019**, *58*, 5697–5701

N-O bond fragmentation via homolytic cleavage

I. Kim, et al. Angew. Chem. Int. Ed. 2018, 57, 15517-15522

Photocatalytic generation of pyridyl radical cation via heterolytic cleavage

Heterolytic cleavage as a minor competing pathway

B. J. Jelier, et al. *Angew. Chem. Int. Ed.* **2018**, *57*, 13784-13789

Select reagents undergo heterolytic cleavage

High-energy trifloxy radical is not generated

Postulated mechanism of pyridinium fragmentation

Keywords

- orbital mixing
- three electron N∴X bond

Contents

- 1. Examples of N-X bond fragmentation
- 2. Theoretical background
- 3. Model calculation

Single electron reduction & fragmentation

Step 1

Single electron reduction

 π^* orbital of pyridinium ion receives an electron from donor.

Step 2

N-O bond fragmentation

→ today's topic

How can we obtain pyridine?

An electron must be transferred from out-of-plane to in-plane before fragmentation.

→ Orbital mixing

 $\pi^* \& \sigma^*$ are orthogonal

→ N-O bond bending

N-O bond bending

planar radical no orbital mixing

N-O bond bending orbital mixing

Representative configurations involved in fragmentation

Configuration changes in fragmentation

Short summary

 π^* orbital of pyridinium ion receives an electron from donor.

N-O bond bending is important for $\pi^* \& \sigma^*$ orbital mixing.

Orbital mixing is impossible when planar radical.

Contents

- 1. Examples of N-X bond fragmentation
- 2. Theoretical background
- 3. Model calculation

Model

N-O out of plane bending angle α

N-O bond length r

Fragmentation is adiabatic

Energy correlation diagram

Assumed a single mixed σ^* state that changes character between $\pi^*\sigma\sigma^*$ & $\sigma\sigma^{*2}$.

Fragmentation occurs from $\sigma\sigma^{*2}$.

18

Radical states formed by orbital mixing

 α , degrees

Orbital mixing becomes more extensive with increasing bond length & decreasing angle

small effect of orbital mixing

19

E. D. Lorance, et al. J. Am. Chem. Soc. 2002, 124, 51, 15225-15238

Energy potential surface

A: diabatic surfaces

B: adiabatic surfaces

E. D. Lorance and I. R. Gould. J. Phys. Chem. A **2005**, 109, 12, 2912–2919

E. D. Lorance and I. R. Gould. J. Phys. Chem. A 2005, 109, 12, 2912-2919

Bent conformations of minimized radical structures

reaction rate:

N-OCH₃
$$r_{N-O} = 1.408 \text{ Å}$$

 $\alpha = 153.8^{\circ}$
 $k_{fr} = 4.6 \times 10^{9} \text{ s}^{-1}$

N=C N-OCH₃
$$r_{N-O} = 1.405 \text{ Å}$$

 $\alpha = 154.6^{\circ}$
 $k_{fr} = 1.2 \times 10^{10} \text{ s}^{-1}$

delocalizing group: bent

N-OCH₃
$$r_{N-O} = 1.428 \text{ Å}$$

 $\alpha = 147.2^{\circ}$
 $k_{fr} = 2.7 \times 10^{11} \text{ s}^{-1}$

The validation of model calculation

Activation free energies

Model vs DFT: good agreement (left)

Model vs Experiment: good agreement (right)

Relationships of exothermicity with bond angle and bond length

 (α, r) at T.S. are similar among different structures, while those at radical minimum are not.

Slow reaction has a radical minimum that is far apart from T.S. & it is an endothermic reaction.

Substitutional effect: general discussion

EDG raises the energies of configurations in which π^* is occupied. (B)

Effect of electron-withdrawing groups

EWG makes fragmentation slower.

Effect of electron-donating groups

EDG makes fragmentation faster.

Effect of delocalizing groups

Delocalizing group makes fragmentation slower.

Summary

N-O bond bending is important for $\pi^* \& \sigma^*$ orbital mixing. Fragmentation occurs from three electron N:X bond.

Conformations at T.S. are similar among different pyridyl radicals.

Fast fragmentation reaction

- occurs when pyridyl radical has EDG(s)
- is highly exothermic
- has radical minimum whose conformation is close to T.S.
 4-OMe pyridyl radical undergoes barrierless fragmentation.