Total Synthesis of Bryostatins

(Previous Achievement and Krische's Work)

Literature seminar (2018.02.14) B4 Hongyu Chen

- 1.Introduction
- 2.Previous work
- 3.Total synthesis of Bryostatin 7 by Krische4.Summary

1. Introduction

Introduction

Isolation:

From the marine bryozoan *Bugula neritina* (フサコケムシ)

Biosynthesis :

Candidatus Endobugula sertula (Symbiotic bacterium of *Bugula neritina*)

Biological activity :

- Potent modulator of protein kinase C (PKC)
- Anti-cancer effect
- Anti-HIV effect
- Life-prolonging effect on Alzheimer's disease

Introduction

Structure features:

- A family of 20 marine natural products
- Three heavily substituted tetrahydropyran rings
- Two acid/base-sensitive *exo*-cyclic unsaturated esters
- One congested C16-C17 trans-alkene
- Numerous oxygen-containing functionalities on a 26-membered lactone

2. Previous work

Development of Bryostatin's Total Synthesis

Synthesis points :

Exo-cyclic unsaturated esters
Congested C16-C17 *trans*-alkene
Macrolactonization
Complex steric structure

Total Synthesis of Bryostatin 7 by Masamune (1990) (1)

- First total synthesis of Bryostatin
- Bryostatin 7 was devided into 4 fragments and chiral enolate reagent 7 controlled enantioselectivity of the product
- 41 steps in total

Masamune, S. et al. J. Am. Chem. Soc., 1990, 112, 7407.

Total Synthesis of Bryostatin 7 by Masamune (1990) (2)

Masamune, S. et al. J. Am. Chem. Soc., 1990, 112, 7407.

Total Synthesis of Bryostatin 7 by Masamune (1990) (3)

Masamune, S. et al. J. Am. Chem. Soc., 1990, 112, 7407.

Total Synthesis of Bryostatin 2 by Evans (1998)(1)

- Rings A-C were derived from the same set of acyclic precursors, each of which contains a common anti-1,3-diol subunit
- This stereochemical motif can be effectively synthesized by sequential aldol and reduction reactions
- 42 steps in total

Evans, D. A. et al. Angew. Chem., Int. Ed. 1998, 37, 2354.

Total Synthesis of Bryostatin 2 by Evans (1998) (2)

Evans, D. A. et al. Angew. Chem., Int. Ed. 1998, 37, 2354.

Total Synthesis of Bryostatin 2 by Evans (1998) (3)

Evans, D. A. et al. Angew. Chem., Int. Ed. 1998, 37, 2354.

Total Synthesis of Bryostatin 3 by Yamamura (2000) (1)

43 steps in total

Yamamura, S. Angew. Chem., Int. Ed. 2000, 39, 2290.

Total Synthesis of Bryostatin 3 by Yamamura (2000) (2)

Table 1. Horner-Wadsworth-Emmons reaction of 8 with various reagents.

Phosphonate	Yield [%]	Z:E ratio of
MeOCH ₂ CO ₂ Me MeO_O_ A	94	1.6:1
PhOCH ₂ CO ₂ Me PhO_O_ B	90	2.0:1
CH ₂ CO ₂ Me	92	4.0:1
CH ₂ CO ₂ Me	85	2.3:1

Yamamura, S. Angew. Chem., Int. Ed. 2000, 39, 2290.

9

Total Synthesis of Bryostatin 3 by Yamamura (2000) (3)

Total Synthesis of Bryostatin 3 by Yamamura (2000) (4)

Yamamura, S. Angew. Chem., Int. Ed. 2000, 39, 2290.

Total Synthesis of Bryostatin 16 by Trost (2008)

- Pd-catalysed chemoselective alkyne-alkyne coupling followed by Au-catalysed 6-endo-dig cyclization efficiently produced both the macrocycle and the C ring of Bryostatin 16
- Ru-catalysed tandem alkene-alkene coupling / Michael addition generated *cis*-tetrahydropyran 6
- 28 steps in total

Trost, B. M. et al. Nature. 2008, 456, 485.

Total Synthesis of Bryostatin 1 by Keck (2011) (1)

- A strategy of combining an A-ring hydroxyallylsilane and a C-ring aldehyde was selected for an attempted synthesis of Bryostatin 1
- A spirocylic structure formed via intramolecular cyclization of the silane at the C9 position was a major byproduct
- 31 steps in total

Gary E. Keck. et al. J. Am. Chem. Soc., 2011, 133 (4), 744.

Total Synthesis of Bryostatin 1 by Keck (2011) (2)

Gary E. Keck. et al. J. Am. Chem. Soc., 2011, 133 (4), 744.

Total Synthesis of Bryostatin 1 by Keck (2011) (3)

Gary E. Keck. et al. J. Am. Chem. Soc., 2011, 133 (4), 744.

Total Synthesis of Bryostatin 9 by Wender (2011) (1)

- An intermolecular Prins cyclization to anneal the B ring was investigated, which prevented the spirocyclic byproduct from synthesizing
- 25 steps in total

Wender, P. A. et al. J. Am. Chem. Soc., 2011, 133, 9228.

Total Synthesis of Bryostatin 9 by Wender (2011) (2)

Wender, P. A. et al. J. Am. Chem. Soc., 2011, 133, 9228.

Total Synthesis of Bryostatin 9 by Wender (2011) (3)

Wender, P. A. et al. J. Am. Chem. Soc., 2011, 133, 9228.

3. Total synthesis of Bryostatin 7 by Krische

Retrosynthetic Analysis of Bryostatin 7

Krische's Work (Key Reaction)

Michael J. Krische. et al. Acc. Chem. Res., 2017, 50, 2371.

Conception of Krische's Work

Michael J. Krische. et al. Acc. Chem. Res., 2017, 50, 2371.

Enantioselective Ir-Catalyzed Carbonyl Allylation via Transfer Hydrogenative Coupling of Allyl Acetate

Effect of Basic and Acidic Additives and Iridium Source in the Transfer Hydrogenative Allylation

3	10 equ	OAc iiv. 1 100 Ar = p	H IrLn (BIPHEF Base (M Additive mol% THF -NO ₂ Ph 100 %	5 mol%) P (5 mol%) 20 mol%) (10 mol%) (0.2 M) C, 20 hrs	OH Ar n	
	Entry	Base	Additive	Iridium Source Y	íeld (%)	
⇒	[1	Cs ₂ CO ₃	m-NO ₂ BzOH	[lr(cod)Cl] ₂	80	
	2	K ₂ CO ₃	$m - NO_2BzOH$	[lr(cod)Cl] ₂	21	
	3	Na ₂ CO ₃	<i>m</i> -NO ₂ BzOH	[lr(cod)Cl] ₂	15	
	4	Li ₂ CO ₃	m-NO ₂ BzOH	[lr(cod)Cl] ₂	12	H ₃ CO
	5		m-NO ₂ BzOH	[lr(cod)Cl] ₂	<u><</u> 5	
e	6	Cs_2CO_3		[lr(cod)Cl] ₂	47	
3as	7			[lr(cod)Cl] ₂	10	
Ъ	8		<i>m</i> -NO ₂ BzOCs	[lr(cod)Cl] ₂	72	\sim
Ĩŧ	9	Cs_2CO_3	<i>m</i> -NO ₂ BzOCs	[lr(cod)Cl] ₂	79	(R)-CI,MeO-BIPHEP
pb	10	Cs_2CO_3	o-NO ₂ BzOH	[lr(cod)Cl] ₂	39	
4	11	Cs_2CO_3	<i>p</i> -NO ₂ BzOH	[lr(cod)Cl] ₂	49	1
	12	Cs_2CO_3	BzOH	[lr(cod)Cl] ₂	39	E
	13	Cs_2CO_3	<i>p</i> -MeOBzOH	[lr(cod)Cl] ₂	42	
	14	Cs_2CO_3	<i>m</i> -FBzOH	[lr(cod)Cl] ₂	41	
	_15	Cs_2CO_3	m-NO ₂ BzOMe	[lr(cod)Cl] ₂	47	
5	16	Cs_2CO_3		[Ir(cod)(BIPHEP)]BAR	- 41	
드	_17	Cs_2CO_3	m-NO ₂ BzOH	[lr(cod)(BIPHEP)]BAR	- 72	

Effect of Substitution of *m*-Nitrobenzoic Acid in the Transfer Hydrogenative Allylation

_	Entry	Carboxylic Acid		Yield (%)	ee (%)
⇒	1	$R_1 = R_2 = R_3 = H$	R ₂ O	71	91 (<i>R</i>)
	2	No Acid Additive	0 ₂ N. ↓ ↓	8	47 (S)
	3	$R_1 = Me, R_2 = R_3 = H$	o 2/1 ↓ ↓ OF	^H 18	65 (S)
	4	$R_2 = Me, R_1 = R_3 = H$	$R_3 \land R_1$	50	67 (R)
	5	$R_3 = Me, R_1 = R_2 = H$	v i	69	91 (<i>R</i>)

- Substituents of *m*-NO₂BzOH are important for enantioselectivity
- R1 is the preferred site of cyclometalation and the enantioselectivity would be reversed if it is blocked

Catalytically Active *ortho*-cyclometalated iridium(II)n-allyl complex V

Michael J. Krische. et al. J. Am. Chem. Soc., 2008, 130, 14891.

Experiments Corroborating Intervention of *Ortho*-Cyclometalated Iridium(III)- π -Allyl Complex(V) as a Catalytically Relevant Entity

- Carbonyl allylation products are also accessible from aldehydes when employing isopropanol as a hydrogen donor
- Complex V serves as an active catalyst in the transfer hydrogenative carbonyl allylation of aldehyde 2n under standard conditions, suggesting that complex V is indeed catalytically relevant

Proposed Stereochemical Model

Ir-Catalyzed Transfer Hydrogenative Allylation of Benzylic Alcohol Employing Isotopically Labeled Allyl Acetate

 Intervention of rapid interconversion of allyl haptomers through the agency of a symmetric π-allyl is supposed

Experiments Establishing Rapid Redox Equilibration in Advance of Carbonyl Addition

 A very similar product distribution and yield are obtained, establishing rapid redox equilibration in advance of C-C coupling

Proposed Catalytic Mechanism

 Dehydrogenation of the secondary alcohol products is prevented by internal chelation of the homoallylic olefin

Michael J. Krische. et al. Acc. Chem. Res., 2017, 50, 2371.

Survey of Enantioselective Alcohol C-H Allylations via Iridium-Catalyzed Hydrogen Transfer

E = CO₂Me > 99% ee Michael J. Krische. et al. *Acc. Chem. Res.*, **2017**, 50, 2371.

Retrosynthetic Analysis of Bryostatin 7

Synthesis of Fragment A

Synthesis of Fragment B Employing Multiple Transfer Hydrogenative C-C Bond Formations (1)

Synthesis of Fragment B Employing Multiple Transfer Hydrogenative C-C Bond Formations (2)

Union of Fragment A and Fragment B and Total Synthesis of Bryostatin 7 (1)

Michael J. Krische. et al. J. Am. Chem. Soc., 2011, 133, 13876.

Union of Fragment A and Fragment B and Total Synthesis of Bryostatin 7 (2)

- Prepared in 20 steps (longest linear sequence) and 36 total steps, representing the most concise route to any bryostatin reported, to date
- Carbonyl allylation products could generate in a single manipulation and form as single enantiomers by utilizing hydrogenative methods
- Hydrogenative methods could bypass the requirement of stoichiometric metals

4. Summary

- Bryostatins are potent modulators of protein kinase C with promising biological activity.
- Total synthesis of Bryostatins 1, 2, 3, 7, 9, and 16 has been reported.
- Multiple transfer hydrogenative C-C bond formations reported by Krische, which was utilized in the total synthesis of Bryostatin 7 in 2011 simplified the total synthesis of Bryostatins.

Appendix

Appendix 1. Structure of Bryostatins (1)

Appendix 1. Structure of Bryostatins (2)

Appendix 2. Biosynthesis of Bryostatin (1)

Sebastian Sudek. et al. J. Nat. Prod., 2007, 70 (1), 67.

Appendix 2. Biosynthesis of Bryostatin (2)

Appendix 3. Hypothetical pathway of PKC synthesis and downregulation by bryostatin 1

Appendix 4. Effect of Allyl Acetate Loading, Solvent, and Ligand in the Transfer Hydrogenative Allylation

Entry		Solvent	Ligand	Allyl Acetate (mol%)	Yield (%)
	1	THF	BIPHEP	1000	80
	2	THF	BIPHEP	500	68
	3	THF	BIPHEP	200	67
	4	Dioxane	BIPHEP	200	68
	5	Toluene	BIPHEP	200	13
	6	DCE	BIPHEP	200	15
	7	THF	PPh_3	1000	8

Appendix 5. Effect of Chiral Ligand and Temperature in the Transfer Hydrogenative Allylation

	10 eq	OAc l uiv. 100 R = CH	$\begin{array}{ccc} PH & [lr(cod)Cl]_2 \ (2.5 \ mol\%) \\ & Chiral Ligand \ (5 \ mol\%) \\ & Cs_2 CO_3 \ (20 \ mol\%) \\ & mol\% & THF \ (0.2 \ M) \\ & H=CHPh & 100 \ ^\circC, \ 20 \ hrs \end{array}$	6) 6) 3 3	
-	Entry	T °C	Chiral Ligand	Yield (%)	ee (%)
⇒	[1	100	(R)-CI,MeO-BIPHEP	71	91 (<i>R</i>)
S	2	80	(R)-CI,MeO-BIPHEP	61	93 (R)
Ĕ	_3	120	(R)-CI,MeO-BIPHEP	59	90 (R)
	4	100	(R)-MeO-BIPHEP	69	80 (R)
	5	100	(R)-BINAP	64	90 (R)
	6	100	(R)-tol-BINAP	51	88 (R)
	7	100	(-)-TMBTP	59	82 (R)
_	8	100	(S)-C1-TUNEPHOS	80	70 (S)
pue	9	100	(R)-C2-TUNEPHOS	77	77 (R)
<u>iğ</u>	10	100	(S)-C3-TUNEPHOS	72	78 (S)
페	11	100	(S)-C4-TUNEPHOS	57	80 (S)
hi	12	100	(R)-H8-BINAP	68	85 (R)
S	13	100	(S)-BIPHEMP	68	80 (R)
	14	100	CTH-(S)-P-PHOS	71	86 (S)
	15	100	(R)-SOLPHOS	41	40 (R)
	16	100	(S)-SEGPHOS	69	78 (S)
	_17	100	(<i>R</i>)-SYNPHOS Michael	69 I Krische et	83 (R) al ./ Am

Appendix 6. Chiral Ligands

(R)-MeO-BIPHEP

(R)-BINAP

(-)-TMBTP

(S)-Cn-TUNEPHOS

(R)-H8-BINAP

CTH-(S)-P-PHOS

(R)-SYNPHOS

Appendix 7. Total Synthesis of Bryostatin 16 by Trost (2008) (1)

Trost, B. M. et al. *Nature*. **2008**, 456, 485.

Appendix 8. Mechanistic Proposal for Ru-Catalyzed Alkene-Alkyne Addition

Appendix 9. Total Synthesis of Bryostatin 16 by Trost (2008) (2)

 Pd catalyst chemoselectively inserts into the carbon-hydrogen bond of the terminal alkyne

Au catalyst gives 6-endo-dig cyclization product selectively

Trost, B. M. et al. *Nature*. **2008**, 456, 485.

Appendix 10. *5-exo-dig* & *Z*-isomer Selectivity of Gold-Catalyzed Cyclization

Condition A: 1% AuCl₃, in CH₂Cl₂ Condition B: 1% (PPh₃)AuCl, 1% AgOTf, in THF

enynol	R ₁	R ₂	R ₃	R ₄	R ₅	condition	yield
1a	Ме	o-CIC ₆ H₄	Ph	Ph	Ph	A, 3h	97%
1b	Me	Ph	Ph	Ph	Cy ^c	A, 1h	92%
1c	Me	p-FC ₆ H₄	Ph	Ph	Bu	A, 1h	89%
1d	Me	Ph	Ph	Ph	Ph	A, 3h	91%
1e	Me	p-FC ₆ H₄	C_3H_7	C_3H_7	Ph	B, 3h	84%
1f	Me	2-thienyl	Ph	Ph	p-MeC ₆ H₄	B, 3h	87%
1g	Me	o-CIC ₆ H ₄	Ph	Ph	Bu	A, 1h	83%

 In all cases, only 5-exo-dig cyclization occurred and stereoisomerically pure compounds (Z)-2 were found to be the only reaction products

YH. Liu. et al. Org. Lett., 2005, 7 (24), 5409.

Appendix 11. Evans Aldol Reaction

https://www.chem-station.com/odos/2009/06/evans-evans-aldol-reaction.html