Liquid-Liquid Phase Separation of α-Synuclein

Literature Seminar 2021/07/08 M2 Atsushi Iwai

Liquid - Liquid Phase Separation

Homogeneous solution

Phase separation

LLPS in Eukaryotic Cells

Liquid-liquid phase separation × Membraneless organelles ↓ Germline P granules are liquid droplets.

(A. A. Hyman et al. *Science* **2009**, *324*, 1729.)

S. Alberti & A. A. Hyman Nat. Rev. Mol. Cell Biol. 2021, 22, 196.

LLPS & Disease

S. Alberti & D. Dormann Annu. Rev. Genet. 2019, 53, 171.

Droplet-forming Amyloid : FUS

Majima–san's literature seminar about ALS-associated protein

https://gousei.f.u-tokyo.ac.jp/seminar/pdf/Lit Sohei Majima M2.pdf

FUS: ALS-associated protein

α -Synuclein Aggregation Mechanism

α -Synuclein Aggregation Mechanism

How does α -synuclein aggregation start? Ordered amyloid fibrils \leftrightarrow Highly complex and heterogeneous Lewy bodies

α -Synuclein Aggregation through Droplet Formation

MDVFM KGLSK AKEGV VAAAE KTKQG VAEAA GKTKE GVLYV GSKTK EGVVH GVATV AEKTK EQVTN VGGAV VIGVT AVAQK TVEGA GSIAA ATGFV KKDQL GKNEE GAPQE GILED MPVDP DNEAY EMPSE EGYQD YEPEA

N-terminal region

Amphiphilic Common sequence KTKEGV Adopt an alpha-helix structure

non-amyloid component (NAC)

Hydrophobic Aggregation center

C-terminal region

Highly acidic Proline-rich region Flexible

MDVFM KGLSK AKEGV VAAAE KTKQG VAEAA GKTKE GVLYV GSKTK EGVVH GVATV AEKTK EQVTN VGGAV VIGVT AVAQK TVEGA GSIAA ATGFV KKDQL GKNEE GAPQE GILED MPVDP DNEAY EMPSE EGYQD YEPEA

IDR: intrinsically disordered regions

A region that cannot have a stable secondary structure by itself.

LCD: low complexity domain

A domain consisting of a limited number of amino acids

Droplet formation in the Presence of a Molecular Crowder¹¹

Droplet formation at Different pH Values

S. K. Maji et al. Nat. Chem. 2020, 12, 705.

Droplet formation at Different Temperature

The Growth of α -Synuclein Droplets

Rhod-α-Syn

Time (min)

Fluorescence Recovery after Photobleaching (FRAP)

Droplet formation with PD-Associated Factors

PD-associated factors promote droplet formation. \rightarrow Aggregation occurs via droplet formation.

S. K. Maji et al. Nat. Chem. 2020, 12, 705.

2 d incubation

Liposomes Are Localized in Droplets

M. Vendruscolo et al. J. Mol. Cell. Biol. 2021, mjaa075

Droplet & Aggregation

- The initial droplets have a high percentage of monomer
- The percentage of aggregates increases with time.

Droplet & Aggregation

The Changes in the Intensity Profile of Amide Cross-Peaks²¹

- A gradual decrease in the intensities of the residues at the N terminus (V3-A27, V37-K43 and H50-E57) and NAC region (V74-V82 and A89-K97).
- The residues in the C terminus (I112–N122) showed a comparatively lower reduction in the intensity.
 S. K. Maji et al. *Nat. Chem.* 2020, 12, 705.

FRET Efficiency between Trp & Cys-DTNB

High FRET efficiency \rightarrow Close distance \rightarrow Interaction N terminus & NAC region interact from the early stage of droplet formation.

Droplet in Cell

C₄ - α-synuclein (FLNCCPGCCMEP - α-syn.) 10 mM ferric ammonium citrate

lo µm lo µm

T. M. Jovin et al. *Nat. Methods*, **2007**, *4*, 345.
J. Levin et al. *J. Parkinson. Dis.* **2011**, *1*, 205
S. K. Maji et al. *Nat. Chem.* **2020**, *12*, 705.

24 h

Droplet in Cell

• Size & surface tension of droplet

Diffusion Dynamics of Droplets

Nocodazole (NOCO): microtubule-depolymerizing agent

- Movement of the liquid-like α-Syn droplets is initially much more directed with the assistance of the microtubules
- Movement of the liquid-like α-Syn droplets reduced upon liquid-to-solid transition

24 h

Droplet & Aggregation in Cell

T (Treated) : W/ Ferric ammonium citrate UT (Untreated) : W/O Ferric ammonium citrate OC : Amyloid-specific antibody FLAG : Total protein ProteoStat : Aggresome detection

Untreated

ProteoStat

48 h

α -Synuclein in C. elegans.

α-Syn. – YFP (yellow fluorescent protein)

Fluorescence lifetime imaging

FRET between YFP and α -synuclein aggregates reduces the fluorescence lifetime of YFP.

Droplet in C. elegans. with 1,6-Hexanediol

Hexanediol : dissolves droplets

Day-11: droplet Day-15: aggregates

M. Vendruscolo et al. J. Mol. Cell. Biol. 2021, mjaa075

FRAP Analysis of Droplet in C. elegans.

M. Vendruscolo et al. J. Mol. Cell. Biol. 2021, mjaa075

Summary

- α-Synuclein forms droplets in vivo, in cell & in C. elegans.
- α-Synuclein aggregates from droplets.
- PD-associated factors & familial mutation promote droplet formation.

Toxic Misfolded Conformers Are Diluted by Cell Division

33

Molecular Chaperones & Protein Disaggregases

X. Yang et al. Cell Rep., 2020, 33, 108418.

Post-Translational Modifications : Phosphorylation

• Phosphorylation promotes droplet formation & aggregation.

• Phosphorylation suppresses droplet formation & aggregation.

FUS & TDP-43

A. L. Darling & J. Shorter, *Biochim. Biophys. Acta, Mol. Cell Res.*, 2021, 1868, 118984.
TIA1 : Y. Jin, et al. *Neuron*, 2019, 104, 290.
tau : B.T. Hyman et al. *Embo J.* 2018, 37, e98049.
FUS : N.L. Fawzi et al. *Embo J.* 2017, 36, 2951.
TDP-43 : N.L. Fawzi et al. *Embo J.* 2018, 37, e97452

Photo-oxygenation suppresses α -synuclein aggregation.

Photo-oxygenation suppresses α -synuclein droplet formation (?)

Day 5 droplets

S. K. Maji et al. Nat. Chem. 2020, 12, 705.

Thioflavin S analysis

ThioS Merge

HSQC Spectra : WT

HSQC Spectra : A53T

HSQC Spectra : E46K

CuSO₄ Treated Droplet in Cell

