Novel Approaches for the Treatment of Alzheimer's Disease

Literature Seminar

2020/06/17

M1 Atsushi Iwai

Contents

1. Introduction

2. AD pathology

3. AD pathology-based therapeutic target

4. Summary

Alzheimer's Disease

• Symptoms

- Impairment of life functioning
- Disorientation
- Memory impairment
- Speech impediment
- Visuospatial cognitive impairment
- Executive dysfunction
- Psychological symptoms

Aloysius Alois Alzheimer

Pathology

- Degenerative loss of neurons and associated cerebral atrophy
- Multiple senile plaques
- Multiple neurofibrillary tangles

Social issues of Alzheimer's disease

• Number of patients

- 47.5 million (2015)
- Over 9.9 million new cases of AD-related dementia are diagnosed every year.

Social costs

- Direct medical costs (e.g. nursing home care)
- Direct nonmedical costs (e.g. in-home day care)
- Indirect costs (e.g. lost productivity of both patient and caregiver)
- Dementia costs worldwide have been calculated around \$818 billion (2015)
- The most costly diseases for society in developed countries

Three main hypothesis

• Cholinergic hypothesis

AD is caused by reduced synthesis of the neurotransmitter acetylcholine.

• Amyloid hypothesis

Extracellular amyloid beta (A β) deposits are the fundamental cause of the disease.

• Tau hypothesis

Tau protein abnormalities initiate the disease cascade.

Existing drugs

• acetylcholinesterase inhibitor

Donepezil

• NMDAR antagonist

Memantine

Rivastigmine

Galantamine

Examples of failed clinical trials of anti-Ab drugs

Name	Mode of Action	Sponsor Involved in the Clinical Trials
Solanezumab	Monoclonal antibody	Eli Lilly
Crenezumab	Monoclonal antibody	Roche- Genetech
Gantenerumab	Monoclonal antibody	Roche- Genetech
Aducanumab	Monoclonal antibody	Biogen
Verubecestat	BACE1 inhibitor	Merck
Lanabecestat	BACE1 inhibitor	Astra, Eli lilly
Atabecestat	BACE1 inhibitor	Janssen

Nurul Husna Ibrahim, Mohamad Fairuz Yahaya, Wael Mohamed, Seong Lin Teoh, Chua Kien and Jaya Kumar, *Front. Pharmacol.*, **2020**, *11*, 261.

Contents

1. Introduction

2. AD pathology

3. AD pathology-based therapeutic target

4. Summary

The general pathways involved in neurodegenerative diseases

Van Bulck M, Sierra-Magro A, Alarcon-Gil J, Perez-Castillo A, Morales-Garcia JA, Int. J. Mol. Sci., **2019**, 20, 719.

$A\beta\,$ changes expression level of mRNA and proteins

• mRNA

Synaptic	Peroxyredoxins		Mitochondrial dynamics/matrix		
PSD-95	-1.5*	Prx1	-1.3	Fis1	1.5*
Synaptophysin	-2.0^{*}	Prx2	-1.1	Drp1	1.1
Synapsin1	-1.5^{**}	Prx3	-1.3	Mfn1	-1.6^{*}
Synapsin2	-1.4^{**}	Prx4	-1.2	Mfn2	-1.1
Synaptobrevin1	-1.3^{*}	Prx5	-1.1	OPA-1	-1.3
Synaptobrevin2	-1.3^{*}	Prx6	1.0	CypD	1.6**
GAP43	-1.2^{**}				
Neurogranin Synaptopodin	1.0 - 1.1				

• Proteins

Calkins MJ, Manczak M, Mao P, Shirendeb U, Reddy PH., Hum. Mol. Genet., 2011, 20, 4515.

Aß oligomer localizes in mitochondria

Effects on mitochondria

Aβ coordinates metal ions

Barnham, K.J.; Masters, C.L.; Bush, A.I., Nat. Rev. Drug Dis., 2004, 3, 205.

Metal ions promote Aß aggregation

	Copper (µg/g) Mean±S.E.M.	Iron (μg/g) Mean±S.E.M.	Zinc (µg/g) Mean±S.E.M.
SP Rim	22.7 ± 6.5^{a}	52.4±14.5 ^a	67.0 ± 13.0^{a}
SP Core	30.1 ± 11.0^{b}	53.1 ± 13.7^{a}	86.8 ± 21.0^{a}
Total SP	25.0 ± 7.8^{a}	52.5 ± 13.7^{a}	69.0 ± 18.4^{a}
AD Neuropil	19.3 ± 6.3^{b}	$38.8 \pm 9.4^{\text{b}}$	$51.4 \pm 11.0^{\circ}$
Control Neuropil	4.4 ± 1.5	18.9 ± 5.3	22.6 ± 2.8

^a P < 0.05 (Plaque values vs. AD neuropil).

^b $P \le 0.08$ (AD Neuropil vs. control neuropil).

^c P < 0.05 (AD Neuropil vs. control neuropil).

Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R., J. Neurol. Sci., 1998, 158, 47.

Atwood, C. S., Moir, R. D., Huang, X., Scarpa, R. C., Bacarra, N. M. E., Romano, D. M., Hartshorn, M. A., Tanzi, R. E., 14 Bush, A. I., *J. Biol. Chem.*, **1998**, *273*, 12817.

Cu & A\beta promote H_2O_2 production

cell survival

Bush A. I. et al., J. Biol. Chem., 1999, 274, 37111.

Aβ inhibits autophagy

Menzies, F.M.; Fleming, A.; Caricasole, A.; Bento, C.F.; Andrews, S.P.; Ashkenazi, A.; Füllgrabe, J.; Jackson, A.; Jimenez Sanchez, M.; Karabiyik, C.; et al., *Neuron*, **2017**, *93*, 1015.

PICALM is low in AD patients

Ando K, Tomimura K, Sazdovitch V, et al. Neurobiol Dis. 2016, 94, 32

Neuro-inflammation

Meraz-Ríos, M. A., Toral-Rios, D., Franco-Bocanegra, D., Villeda-Hernández, J., Campos-Peña, V., *Front. Integr. Neurosci.*, **2013**, *7*, 59.

A β increases levels of TNF- α & IL-1 β

Loftis JM, Huckans M, Morasco BJ, Neurobiol Dis., 2010, 37, 519.

19

Contents

1. Introduction

2. AD pathology

3. AD pathology-based therapeutic target

4. Summary

AD pathology-based therapeutic target

Novel treatment strategies for AD

- 1. Minocycline
- 2. 4-(1-benzylpiperidin-4-yl)thiosemicarbazone
- 3. Diethyl (3,4-dihydroxyphenethylamino) (quinolin-4-yl)methylphosphonate
- 4. Oligomannate

Minocycline

Tetracycline antibiotics

In animal models

- Alzheimer's disease (Garcez et al. 2017)
- Traumatic brain injury (Hanlon et al. 2016)
- Multiple sclerosis (Giuliani et al. 2005)
- Cerebral ischemia (Yrjänheikki et al. 1999)
- Huntington's disease (Chen et al. 2000)
- Parkinson's disease (Du et al. 2001)
- Stroke (Lampl et al. 2007)
- Anxiety-related behaviors (Majidi et al. 2016)
- Schizophrenia (Chaudhry et al. 2012)
- Anti-depressant effect (Amorim et al. 2017)

Clinical trial of minocycline

Success example of depression

- Mild-to-moderate depression in HIV patients (Emadi-Kouchak et al. 2016)
- Major depressive disorder (Dean et al. 2017)
- Bipolar depression (Soczynska et al. 2017)

In Alzheimer's disease

• "Minocycline did not delay the progress of cognitive or functional impairment in people with mild AD during a 2-year period." (Howard et al. 2020)

Experimental design of minocycline treatment

Result of experiment 1

Amani, M.; Shokouhi, G.; Salari, A.A., *Psychopharmacology*, **2019**, *236*, 1281. 25

Result of experiment 2

Amani, M.; Shokouhi, G.; Salari, A.A., *Psychopharmacology*, **2019**, *236*, 1281. 26

The level of Cytokines

27

The level of Cytokines

Amani, M.; Shokouhi, G.; Salari, A.A., *Psychopharmacology*, **2019**, *236*, 1281. 28

Design strategy of multi-target drug

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, 29 D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612.

BPT series

D.R., Eur. J. Med. Chem. 2017, 139, 612.

Anti-proliferative activity

• The anti-proliferative activity against SK-N-MC neuroepithelioma cells

Compound	Ligand (L)	Cu ^{II} (L)	$Fe^{III}(L_2)$
DFO	16.81 ± 3.87	9.83 ± 0.38	>25 ^b
Dp44mT	0.013 ± 0.01	0.014 ± 0.01	2.00 ± 0.49
Donepezil	>100	83.33 ± 7.60	>100
PBPT	>100	46.18 ± 7.97	>100
SBPT	34.41 \pm 1.24	1.30 ± 0.14	77.99 \pm 11.58
NBPT	8.86 \pm 0.10	1.81 ± 0.53	52.90 \pm 8.34
PCBPT	4.23 \pm 1.41	0.43 ± 0.02	1.33 \pm 0.11
QBPT	17.71 \pm 0.70	3.86 ± 1.28	1.20 \pm 0.26
8-OH-QBPT	36.14 ± 3.24	$\begin{array}{c} 1.87 \pm 0.50 \\ 0.40 \pm 0.09 \\ 12.22 \pm 0.09 \end{array}$	>100
2,3-OH-BBPT	16.85 ± 0.96		23.99 ± 4.85
2,3,4-OH-BBPT	79.14 ± 0.36		80.06 ± 13.57

IC₅₀ (μM)

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, 31 D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612.

Inhibition of AChE activity

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, ₃₂ D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612.

Chelation of redox-active metals

⁵⁹Fe release from prelabeled cells

• Inhibiting ⁵⁹Fe uptake from ⁵⁹Fe-Transferrin

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, ₃₃ D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612.

Chelation of redox-active metals

• The effect on ascorbate oxidation

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, 34 D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612.

Inhibiting copper-mediated Ab1-40 aggregation

Induction of autophagy

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, 35 D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612.

BBB permeability

- Evaluation of physicochemical parameters to cross the blood brain barrier (BBB)
 - 1. Lipinski's Rule of Five (Oral bioavailability)
 - Hydrogen bond donors (OH and NH) \leq 5
 - Hydrogen bond acceptors (N and O) \leq 10
 - Molecular weight \leq 500
 - LogP ≤ 5
 - 2. Successful CNS agents
 - Topological polar surface area < 90 $\rm \AA^2$
 - 2 < cLogP <5

• LogBB > -1 (LogBB = -0.0148 × TPSA + 0.152 × cLogP +0.139)

Compound	M.W ^a	LogP ^a	HBA (N+O)	HBD (NH+OH)	Rot. bonds ^b	TPSA ^a	cLogPa	LogBB ^c
Tacrine	198.27	2.91	2	2	0	38.38	3.27	0.07
Donepezil	379.50	4.01	4	0	6	38.77	4.60	0.26
PBPT	413.54	2.30	7	4	8	92.48	2.69	-0.82
SBPT	368.50	3.51	5	3	7	59.89	3.79	-0.17
NBPT	418.56	4.51	5	3	7	59.89	4.97	0.01
PCBPT	353.49	2.98	5	2	7	52.02	2.43	-0.26
QBPT	403.55	4.41	5	2	7	52.02	3.81	-0.05
8-OH-QBPT	419.55	4.02	6	3	7	72.25	3.91	-0.34
2,3-OH-BBPT	384.50	3.12	6	4	7	80.12	3.42	-0.53
2,3,4-OH-BBPT	400.50	2.73	7	5	7	100.35	2.82	-0.92
Required Parameters ^d	\leq 500	\leq 5	≤ 10	\leq 5	≤ 10	<90	2–5	>-1

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612. 36 D.E. Clark, *J. Pharm. Sci.*, **1999**, *88*, 815.

Summary of Multi-Target Drug Therapy

pyridoxal 4-(1-benzylpiperidin-4-yl)thiosemicarbazone (PBPT)

- PBPT is best of the 8 compounds.
- Low anti-proliferative activity.
- Moderate AChE inhibitory activity.
- Favorable iron chelation properties.
- The inhibition of Fe(III)-mediated ascorbate oxidation.
- The inhibition of Cu(II)-mediated aggregation of Ab1-40.
- Increase autophagic initiation.
- The physicochemical properties of PBPT are favorable for CNS permeation.

Lead compound with promising multi-functional activity to treat the complex pathology associated with AD.

Design strategy of Mitochondrial dysfunction target drug

• Existing Drp1 inhibiting drugs

• New Drp1 inhibiting drugs

Dopamine based structure

Diethyl (3,4-dihydroxyphenethylamino) (quinolin-4-yl)methylphosphonate (DDQ)

Ligand	Docking Score (Kcal/mol)
DDQ	-10.8462
MitoQ	-9.8205
Dynasore	-9.0080
Midvi1	-7.0117

Experimental design

mRNA levels

Genes	mRNA fold changes compare with untreated cells				mRNA fold changes compare with A β -treated cells		
	DDQ	Αβ	Aβ+DDQ	DDQ+A _β	Aβ+DDQ	DDQ+A _β	
Mitochondrial Str	ructural genes						
Drp1	-2.2*	2.2**	1.9*	-2.1*	-1.7*	-4.6***	
Fis1	-4.4***	1.7*	-1.2	-1.3	-2.0*	-2.5*	
Mfn1	1.7*	-2.3**	1.4	1.2	3.3**	2.9**	
Mfn2	2.3**	-2.6**	1.3	1.1	3.4**	2.9**	
Synaptic genes							
Synaptophysin	1.4*	-3.7***	-2.4*	-1.6*	1.6*	2.4*	
PSD95	1.4*	-2.5**	-1.4^{*}	-1.2	1.8*	2.1*	
Synapsin1	1.0	-1.9*	1.1	1.3	2.1*	2.5*	
Synapsin2	1.7*	-1.4^{*}	1.1	1.8*	2.4*	2.9**	
Synaptobrevin1	1.0	-2.4**	-1.1	-1.4	2.0*	1.7*	
Synaptobrevin2	1.3	-2.3*	1.0	1.0	2.1*	2.3*	
Synaptopodin	1.0	-2.3**	-1.1	-1.1	2.0*	2.1*	
GAP43	1.2	-1.9**	1.1	1.1	1.7*	1.7*	
Mitochondrial Bio	ogenesis genes						
PGC1a	1.5*	-4.4^{**}	-1.8^{*}	-1.1	2.5*	3.9**	
Nrf1	1.9*	-4.1^{**}	-1.7^{*}	1.1	2.6**	4.9***	
Nrf2	2.7*	-2.8*	-1.3	-1.1	2.1*	2.6*	
TFAM	1.7*	-4.6***	-2.0*	-1.5*	2.3*	3.2**	

Protein levels

Kuruva, C.S.; Manczak, M.; Yin, X.; Ogunmokun, G.; Reddy, A.P.; Reddy, P.H., Hum. Mol. Genet. 2017, 26, 3375.

41

Mitochondrial functional assays

Cell viability analysis

Kuruva, C.S.; Manczak, M.; Yin, X.; Ogunmokun, G.; Reddy, A.P.; Reddy, P.H., Hum. Mol. Genet. 2017, 26, 3375.

Transmission electron microscopy

Kuruva, C.S.; Manczak, M.; Yin, X.; Ogunmokun, G.; Reddy, A.P.; Reddy, P.H., Hum. Mol. Genet. 2017, 26, 3375.

Interaction between Aß and Drp1

The localization of Drp1 and $A\beta$

Summary of DDQ

Diethyl (3,4-dihydroxyphenethylamino) (quinolin-4-yl)methylphosphonate (DDQ)

- Bound at Ab and Drp1 interacting sites to Inhibit Ab and Drp1 complex formation
- showed better docking score.
- Enhanced fusion activity, reduced fission machinery, and increased mitochondrial biogenesis and synaptic activities.
- Reduces the levels of Ab and Drp1 and interaction between Ab and Drp1.
- Maintains mitochondrial function and cell viability.
- DDQ can reduce the negative effects of Aβ
- Prevention is better than treatment.

Promising molecule to treat AD neurons.

AD & gut microbiota

Wang, X., Sun, G., Feng, T. et al. Cell Res., 2019, 29, 787. 48

AD progression is associated with the alteration of gut microbiota

- Aβ 20-PCA on OTU level Relative level Γg 2M 20 ſg 3M g 5M Tg 7M PC2 (6.07%) Tg 9M 10 0 ż ż Ò 5 7 Months 9 0 TAU 25-Relative level -10 WT 2M 3M 5N WT 7M -20 • WT 9M -20 -10 10 PC1 (13.51%) 0 ż ż 0 9 Months
- The gut microbiome composition of WT and Tg mice
- Aβ & Tau level of Tg mice

Wang, X., Sun, G., Feng, T. et al. Cell Res., 2019, 29, 787. 49

GV-971 exhibits ameliorative effects on cognitive impairment

Structure of GV-971

n=1-9; m=0,1 or 2; m'=0 or 1

Wang, X., Sun, G., Feng, T. et al. Cell Res., 2019, 29, 787.

The number of platform-site crossovers in MWM test

50

gut microbiota

GV-971 alleviates neuroinflammation by shaping the gut microbiota

PCoA on OTU level 🔴 Tg -0.4 Tg +GV-971 -0.3 -PC2(17.29%) 0.2 0.1 0.0 -0.1 -0.2 -0.3 -0.2 -0.1 -0.0 0.1 0.2 0.3 0.4 PC1(18.46%)

brain

Wang, X., Sun, G., Feng, T. et al. Cell Res., 2019, 29, 787.

oligomannate

n=1-9; m=0,1 or 2; m'=0 or 1

(Shanghai Green Valley Pharmaceuticals)

2003 Memantine was approved

2019 Oligomannate was approved in China

2020 The Phase 3 clinical trial in U.S.A & Europe

Contents

1. Introduction

2. AD pathology

3. AD pathology-based therapeutic target

4. Summary

- In addition to Aβ and tau, multiple factors are involved in Alzheimer's disease.
- Drug discovery research on various causative factors of Alzheimer's disease is being conducted.

Dynamic biomarkers of the Alzheimer's pathological cascade

John Q Trojanowski, et al., Lancet Neurol., 2010, 9, 119.

Proteolytic cleavage of APP

Dileep K. Vijayan, and Remya C, *Current Drug Targets*, **2019**, *20*, 148.
PJ Ward, *et al.*, *Science*, **1990**, *248*, 1122.
BA Yankner, *et al.*, *Proc. Natl. Acad. Sci. U.S.A.*, **1999**, *96*, 6959.
BA Yankner, *et al.*, *Nat. Natl. Cell Biol.*, **2000**, *2*, 463.
W Song, *et al.*, *FASEB J.*, **2006**, *20*, 285.

57

Cu & A β generate H₂O₂

A β Reduces Cu($I\!I$)

Bush A. I. et al., J. Biol. Chem., 1999, 274, 37111.

3D and 2D docking diagrams showing the binding mode

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612.

X-ray crystal structures of [Cu(SBPT)Cl2]

SBPT

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612.

Bafilomycin's effect

Palanimuthu, D.; Poon, R.; Sahni, S.; Anjum, R.; Hibbs, D.; Lin, H.Y.; Bernhardt, P.V.; Kalinowski, D.S.; Richardson, D.R., *Eur. J. Med. Chem.* **2017**, *139*, 612.

Immunofluorescence analysis (DDQ)

Kuruva, C.S.; Manczak, M.; Yin, X.; Ogunmokun, G.; Reddy, A.P.; Reddy, P.H., Hum. Mol. Genet. 2017, 26, 3375.

63

Principal component analysis

https://logics-of-blue.com/principal-components-analysis/

iPSC-Based Compound Screening

Anti-Aβ Cocktail of BCroT (bromocriptine, cromolyn, topiramate)