Chapter 6: Oxidative Addition of Nonpolar Reagents

6.1. General

Metal: two electron oxidation

cf. Grignard reagent formation Carbene insertion

dinuclear

$$LnM^{n}-LnM^{n} + A-B$$
 \longrightarrow $LnM^{n+1}-A + LnM^{n+1}-B$ $2LnM^{n} + A-A$ \longrightarrow $2LnM^{n+1}-A$

Metal: one electron oxidation \times 2

A-B bond < M-A bond + M-B bond cf.

strong metal-H bond weak metal-C bond weak C-X bond

A-B	∆H kcal/mol	ΔG kcal/mol
H-H	-15	-6
CH ₃ -H	-2	+3
CH ₃ -CH ₃	-4	+6
CH ₃ -I	-35	-25

^{*} estimated values

Qualitative trends for oxidative addition

- 1. metal center : electron rich electron poor
 oxi. add. : fast slow
 (partial positive charge at the metal during the process)
 (red. elim. : slow fast)
- 2. Less hindered metal centers are favorable.

(increased steric hindrance after an oxi. add.)

(red. elim. : *More hindered* metal centers are favorable)

- 3. for nonpolar reagents Requires a site of unsaturation. less than 16e at the metal center
- 4. Rate of ligand dissociation affects the overall rate.

slower	faster
bidentate	monodentate
strongly bound monodentate	weakly bound monodentate

6.2. Oxidative Addition of H₂

single metal center

side on > end on cis addition (trans addition is "forbidden") "early" transition state

ex.

two metal centers

most common with cobalt complex

ex.

$$2 \operatorname{Co}(\operatorname{CN})_5^{3-} + \operatorname{H}_2 \longrightarrow \begin{bmatrix} \operatorname{Co} & \operatorname{H} \\ \operatorname{Co} & \operatorname{H} \\ \operatorname{or} \\ \operatorname{Co} & \operatorname{Co} & \operatorname{H} - \operatorname{Co} \end{bmatrix} \longrightarrow 2 \operatorname{HCo}(\operatorname{CN})_5^{3-}$$

rate= $k[H_2][M]^2$

The transition state would be formed by combination of H₂ and two metal centers.

$$- Rh - O(CH_2)_6O - Rh - Rh - O(CH_2)_6O - Rh - Rh$$

Preorganization enhances the rate :103 faster than (TMP)Rh

J. Am. Chem. Soc. 1994, 116, 7897.

6.3. Oxidative Addition of Si-H

similar mechanism to H_2 oxidative addition stereochemistry at Si: retention

6.4. Oxidative Addition of C-H

non-radical processes via alkane $\sigma\text{-complexes}$ $\bigg\}$ is the most common

eary examples

Shilov's early example R-H
$$\begin{array}{c|c} & K_2PtCl_4/100 \text{ °C} \\\hline D_2O/DOAc + HCl \\\hline H_2PtCl_6/K_2PtCl_4 \\\hline 110\sim 170 \text{ °C} /CF_3CO_2H \end{array} \begin{array}{c} \text{RCI, ROCOCF}_3 \\\hline \\ \text{dehydrogenation} \end{array}$$

intramolecular

general tendency: Ar > primary > methylene

$$(Ph_3P)IrCI \qquad \qquad (Ph_3P)_2(CI)Ir \\ Ph_2 \\ (Me_3P)_4M \qquad \qquad Me_2P \\ Me_3P \\ Me_3P \\ H \\ PMe_3 \\ Me_3P \\ H \\ PMe_3 \\ Me_3P \\ He_3 \\$$

cyclometallation

- deactivation pathway
- •can be a stable precursor of active catalyst
- •can be a active spiecies (less common) (J. Am. Chem. Soc. 2003, 125, 14272.)

intermolecular

arene > alkane (both kinetically and thermodyanamically)

The difference between M-aryl and M-alkyl is larger than H-aryl and H-alkyl.

lower steric hindrance lower directinality of
$$sp^2$$
 precoordination

Metal alkyl-hydride complexes are known for group 7-10. (Re, Fe, Rh, Ir, Pt...)

The greater strength of M-C bonds of third-row transition metal makes the oxid. add. common.

Rh and Ir with Cp, anion ligand, PCP-pincer consititute major examples.

$$h_{V}$$
 R
 h_{V}
 R
 H
 R
 H
 R
 H
 R
 H
 R

Additions to group 8-10 metals with chelating alkylphosphines are known.

Alkane oxidative addition

•high selectivity at primary C-H (contrast with radical, metal carbene)

$$\begin{array}{c} Cp^* \\ Me_3P \\ \hline \end{array} \qquad \begin{array}{c} k_{eq} \\ \hline \end{array}$$

Mechanism

same orbital interaction as H₂

not directly observed but supported by several data

Kinetic selectivityfor primary C-H is unclear. (ex. 64 times faster than secondary) Cp*Ir(PMe₃): not selective Cp*Re(PMe₃)₂, Cp*Rh(PMe₃): highly selective

Methods to generate unsaturated intermediates

photolysis of M-CO or MH₂ (Cp*Ir(CO)₂) thermolysis of alkyl hydride complex abstraction of halide (addition of AgB(Ar_f)₄) protonation of alkyl complex

Application

synthesis of rhazinilam

$$\begin{array}{c} \text{MeO} \\ \text{O} \\ \text{N} \\ \text{Ph} \\ \text{N} \\ \text{N} \\ \text{Me} \end{array} \begin{array}{c} \text{MeO} \\ \text{O} \\ \text{O} \\ \text{CF}_3\text{CH}_2\text{OH} \\ \text{70 °C, 90\%} \\ \text{Ph} \\ \text{N} \\ \text{N} \\ \text{Ph} \\ \text{N} \\ \text{N} \\ \text{Ph} \\ \text{N} \\ \text{Ph} \\ \text{N} \\ \text{$$

Dinuclear activation of C-H

rare example process is similar to H₂ oxid. add.

6.5. Other than oxidative addition

d⁰ Metals cannot undergo oxidative addition.

 σ -Bond metathesis or [2+2] reactions.

σ-bond metathesis

$$L_nM-R+R'-H$$
 \longrightarrow $L_nM-R'+R-H$

common among d^0 transition metal (lanthnide, actinide, main group compounds) multi-step sequence

requires a site of unsaturation

The reactivity of σ -bond metathesis of H₂, C-H, Ar-H parallels the reactivities of oxid. add.

basic
$$L_{n}M-R+R'-H \longrightarrow L_{n}M-R \longrightarrow ML_{n} \stackrel{R}{\longrightarrow} H \longrightarrow L_{n}M-R'+R-H$$

$$L_{n}M-R'+R-H \longrightarrow L_{n}M-R'$$
increased acidity

lower stability than late metals

[CpRu(dmpe)(H₂)]⁺: pKa 17.6 in MeCN

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Even late transition metals can undergo σ -bond metathesis in some cases.

More common with H_2 than C-H heterolytic cleavage. (Due to higher acidity and stability of dihydrogen complexes.)

The amount of M-H bonding is a one determining factor.

oxidative hydrogen migration

[2+2] additions with M=N or M=C complexes

ex. Ti, Zr, Ta, W

Ti=N complex

kinetics: primary > secondary arene > alkane

thermodynamics: primary > secondary aryl complex > alkyl complex

carbene complex

alkylidyne complex

6.6. Oxidative Addition of C-C strained ring system

1a 2a 81% J. Am. Chem. Soc. 2002, 124, 13976

ligating group

exception: aryl nitrile

PCP pincer complex

 $M-C(sp^2)$ has higher stability than $M-C(sp^3)$.

rerative rate of C-H or C-C insertion depends on substrates and complex

$$Cp*Rh(PMe_3) + \triangle \longrightarrow \begin{array}{c} PMe_3 \\ Cp*Rh \\ H \longrightarrow \end{array} \longrightarrow \begin{array}{c} Cp* \\ Me_3 P \longrightarrow \end{array}$$

6.7. Oxidative Addition of E-E

Oxidative addition to Si-Si, B-B, Si-B, Sn-B is easier.

Chapter 7: Oxidative Addition of Polar Reagents

7.1. S_N2 Pathways

Metal acts as a nucleophile.

$$M^{n} \longrightarrow \begin{bmatrix} C - X & \longrightarrow & \begin{bmatrix} M - C & X \end{bmatrix} & \longrightarrow & \begin{bmatrix} M^{(n+2)} - C & X \end{bmatrix}^{\bigoplus} & X \longrightarrow & X - M - C & X \longrightarrow & X - M - C & X \longrightarrow & X - M - C & X \longrightarrow &$$

- •faster reaction in more polar solvents
- inversion
- •kinetics are second order
- •relative rate: Me > 1° > 2° >> 3° ; I > Br > Cl >>F

Na₂Fe[CO]₄: d¹⁰ "supernucleophile"

It can react with neopentyl chloride.

Precoordination of an anion to a neutral metal can accelerate the oxid. add. (The origin of the effect was unclear...)

1/2[M(CO)₂I]₂
$$\xrightarrow{I^-}$$
 [M(CO)₂I₂]⁻ \xrightarrow{Mel} [M(CO)₂(Me)I₃]⁻

M = Rh, Ir

$$\downarrow LiX$$
[M(CO)₂I₂X]² \xrightarrow{Mel} [M(CO)₂(Me)I₂X]⁻

7.2. Radical Pathway

- •weaker and more-hindered electrophiles
- coordinatively saturated metal centers
- •metal complexes which are prone to undergo one-electron oxidation (most common with first low metals)

(aryl sulfonates: non-radical pathway)

Inner-Sphere Electron Transfer

$$M^n + RX \longrightarrow M^{n---}X-R \longrightarrow [\cdot M^{n+1} + R \cdot] \longrightarrow R-M^{n+2}-X$$
coordination solvent cage

racemization occurr

ex. Ni(PEt₃)₄ + ArI

Radical Chain Pathway

require coordinatively unsaturated metal center initiator: trace impurities, trace O₂, light induced radical etc.

initiation

propagation

R. +
$$M^n \longrightarrow R-M^{n+1}$$

R. $M^{n+1} + X-R \longrightarrow R-M^{n+2}-X + R$

CI

Me₃P-Ir-PMe₃ + M^n

CO

Me₂P \(Ir \) PMe

Me₂P \(Ir \) CI

Outer-Sphere Electron Transfer

metal: coordinatively saturated electrophile: suceptible to electron transfer

sterically hindered weak C-X bond

$$Cp_2Zr(PR_3)_2 + RX \xrightarrow{-2PR_3} Cp_2ZrX + R \cdot \longrightarrow Cp_2Zr \stackrel{R}{\searrow}$$

Atom Abstraction and Combination of the Resulting Radical with a Second Metal

facile one-electron oxidation slow two-electron oxdation generates the two products

Ligand: the bulkier the slower Electrophile: RI > RBr >> RCI

$$M + X-R \xrightarrow{rds} X-M + R$$

$$R + M \xrightarrow{fast} R-M$$

$$Co(CN)_5^{3-} + R-X \xrightarrow{rds} XCo(CN)_5^{3-} + R-X$$

$$R \cdot + Co(CN)_5^{3-} \xrightarrow{fast} RCo(CN)_5^{3-}$$

7.3. Concerted Oxidative Addition

oxid. add. to ArX

concerted vs radical

$$L_{2}Pd(0) \longrightarrow X \longrightarrow L_{n}Pd X \text{ concerted pathway}$$

$$14e \qquad PdL_{2}$$

$$16e \qquad x \qquad radical pathway$$

$$18e \qquad 18e$$

palladium complex

typically occurs to a 14-electron complex

highly bulky phosphine ligands: via LPd (12e) or associative mechanism to L₂Pd (14e)

bite angle

small bite angle faster at the step of C-X cleavage less hindered (slower dissociaion of ligands) large bite angle ligands faster overall multistep oxid. add. process

alkyl vs aryl phosphines

Alkyl phosphines are more reactive due to the higher electron donating nature. (related carbenes also have high reactivity)

reaction rate of R-X: I > OTf > Br > CI ≈ OTs

(but depend on the identity of the metal center)

Added anion can influence the rate of oxid. add. by forming anionic complex.

Oxidative Addition of Reagents with H-X Bonds of Medium Porality

via three-centered transition state or protonation of a basic metal center

protonation pathway

with hindered trialkyl phosphine or mixed alkyl arel phosphine ligands

three-centered transition state

P-H and S-H bonds are more favorable substrate than N-H and O-H. (weaker X-H bonds, more acidic, stronger M-S, M-P bond)

Oxid. add. of aniline is more common than alkyl amines due to the acidity.

7.4. Dinuclear Oxidative Additions of Electrophilic A-B

Both homodinuclear and heterodinulear complexes are known. Mechanism are closely related to those of mononuclear complexes.

$$(CO)_{5}Mn-Mn(CO)_{5} + Mel \longrightarrow (CO)_{5}Mn-Me + I-Mn(CO)_{5}$$

$$Me_{2}Me_{2}$$

$$P \longrightarrow CO$$

$$Rh \longrightarrow Me_{2}$$

$$OC \longrightarrow CO$$

$$Me_{2}Me_{2}$$

$$Me_{2}Me_{2}$$

$$Me_{3}Me_{4}$$

$$Me_{2}Me_{2}$$

$$Me_{2}Me_{2}$$

$$Me_{2}Me_{3}$$

$$Me_{2}Me_{4}$$

$$Me_{2}Me_{4}$$

$$Me_{2}Me_{4}$$

$$Me_{2}Me_{4}$$

$$Me_{2}Me_{4}$$

$$Me_{2}Me_{4}$$

$$Me_{2}Me_{4}$$

$$Me_{4}Me_{5}$$

$$Me_{2}Me_{4}$$

$$Me_{4}Me_{5}$$

$$Me_{5}Me_{4}$$

$$Me_{5}Me_{4}$$

$$Me_{5}Me_{4}$$

$$Me_{5}Me_{5}$$

$$Me_{6}Me_{2}$$

$$Me_{7}Me_{8}$$

$$Me_{8}Me_{2}$$

$$Me_{8}Me_{2}$$

$$Me_{1}Me_{2}$$

$$Me_{2}Me_{3}$$

$$Me_{4}Me_{5}$$

$$Me_{5}Me_{4}$$

$$Me_{5}Me_{5}$$

$$Me_{7}Me_{8}$$

$$Me_{8}Me_{1}Me_{2}$$

$$Me_{1}Me_{2}$$

$$Me_{2}Me_{3}$$

$$Me_{2}Me_{4}Me_{5}$$

$$Me_{5}Me_{5}Me_{5}$$

$$Me_{7}Me_{8}$$

$$Me_{8}Me_{1}Me_{2}$$

$$Me_{1}Me_{2}$$

$$Me_{2}Me_{3}Me_{4}$$

$$Me_{3}Me_{5}Me_{5}$$

$$Me_{4}Me_{5}Me_{5}$$

$$Me_{5}Me_{5}Me_{5}Me_{5}$$

$$Me_{5}Me_{5}Me_{5}Me_{5}$$

$$Me_{7}Me_{7}Me_{7}Me_{7}Me_{7}Me_{7}$$

$$Me_{8}Me_{7}Me_$$

early-late heterobimetallic

Summary

MeI: S_N2 pathway

higher alkyl : radical pathway coordinatively saturated : outer-sphere electron transfer coordinatively unsaturated: inner-sphere electron transfer

 $\label{eq:arx} \text{ArX}: \textbf{Many radical pathways are known, but } \textbf{Pd}(\textbf{0}) \text{ tends to undergo concerted pathway.}$

HX: Three-centered transition state is more common.