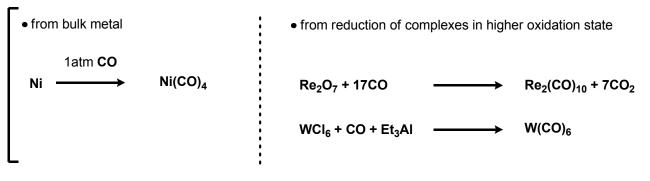
2.1 Introduction

Chapters 2-4: presents illustrative summary of the types of complexes **Chapter 2**: **steric and electronic properties of neutral ligands** (Chapters 3&4: formally anionic ligands)

2.2 Carbon Monoxide and Related Ligands

2.2.1. Properties of Free Carbon Monoxide


• small dipole moment with negative end located on carbon

со

- strong vibration in IR at 2143 cm⁻¹
- neutral ligand, commonly binds to metal C's lone pair electrons
- normally binds to one metal, but bridging coordination is possible (M-C-M angle is much less than 120°)

2.2.2. Types of Metal Carbonyl Complexes

Preparation of metal-carbonyl complexes

polynuclear carbonyl complexes

Fe(CO) ₅		Os(CO) ₅	Os ₃ (CO) ₁₂	homoleptic carbonyl complexes in 2nd and 3rd row
stable	0 0 0 0	much less stable	more stable	polynuclear structure is more favorable

Classification of metal carbonyl complexes: Figure 2.2

2.2.3. Models for CO Binding: Introduction of Backbonding

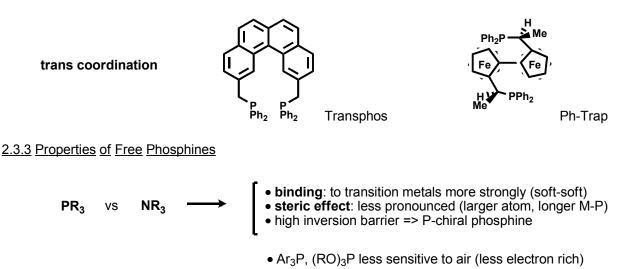
• CO binds strongly to **electron-rich**, **low valent** metals (backbonding, soft metal and soft ligand)

2.2.6. Thermodynamics of the M-CO Bonds

Table 2.3

- $Cr(CO)_6 < Mo(CO)_6 < W(CO)_6$
- $Ni(CO)_4 < Cr(CO)_6$
- Ir(P^{*i*}Pr₃)₂CI(CO) (particulary strong)

higher enegy of orbitals, backdonation third row, electron-rich alkylphosphine

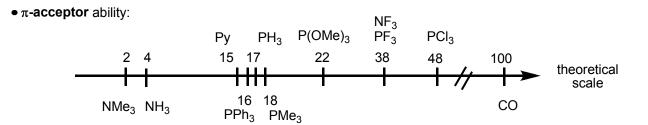

2.2.7. Isoelectronic Analogs of CO: Isocyanides and Thiocarbonyls

C ≡ N—R	• stronger σ -donor, weaker π -acceptor than CO
isocvanide	• weaker C-X π -bond than CO

2.3 Dative Phosphorous Ligands and Heavier Congeners

2.3.1 Tertiary Phosphines and Related Ligands

2.3.4 Properties of Phosphine Complexes


2.3.4.1 Bonding and Electronic Properties

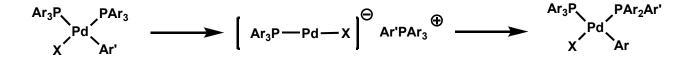
• Electron-donating ability:
$$R_3P > Ar_3P > (RO)_3P$$

greater s-character of sp²-hybridized orbital of aryl =>weaker electron donor than alkyl

electron-donation: alkyl > alkoxy

• π -acceptor orbital: hybrid of P-X σ *-orbital and phosphorus *d*-orbital (Figure 2.9)

electron donating ability (v_{CO} in [Ni(CO)₃L])

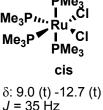

L	v _{CO} (cm⁻¹)	L	ν _{CO} (cm ⁻¹)
P <i>t</i> Bu ₃	2056	${PPh_3} \\ P(OMe)_3 \\ P(OPh)_3 \\ PF_3$	2069
PCy ₃	2056		2079
PMe ₃	2064		2085
P(C ₆ H ₄ -4-OMe) ₃	2066		2110

2.3.4.2 Steric Properties cone angle, solid angle (figure 2.11)

- 2.3.4.3 Effect of Phosphine Steric and Electronic Properties on Structure and Reactivity
 - ligand dissociation in NiL₄ (and related Pd complexes) $PMe_3 < PMe_2Ph < PMePh_2 < PEt_3 < PPh_3 < PiPr_3 < PCy_3 < PPhtBu_2$
 - bulky phosphines bind trans to one another
 - deviation from the ideal coordination geomety because of bulky phosphines
 e.g.) Wilkinson complex RhCl(PPh₃)₃=> nonplanar (normally, square planar for d⁸ Rh(I))

2.3.5 Pathways for the Decomposition of Phosphorus Ligands

- oxidation: more electron rich phosphine
- P-C bond cleavage



• P-X clevage (X =OR, NR₂) by water or alcohol

2.3.6 NMR Spectroscopic Properties of Phosphines

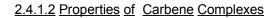
³¹P: 1/2 spin, 100% abundant relative receptivity: 0.0665 (H = 1, C = 0.000175)

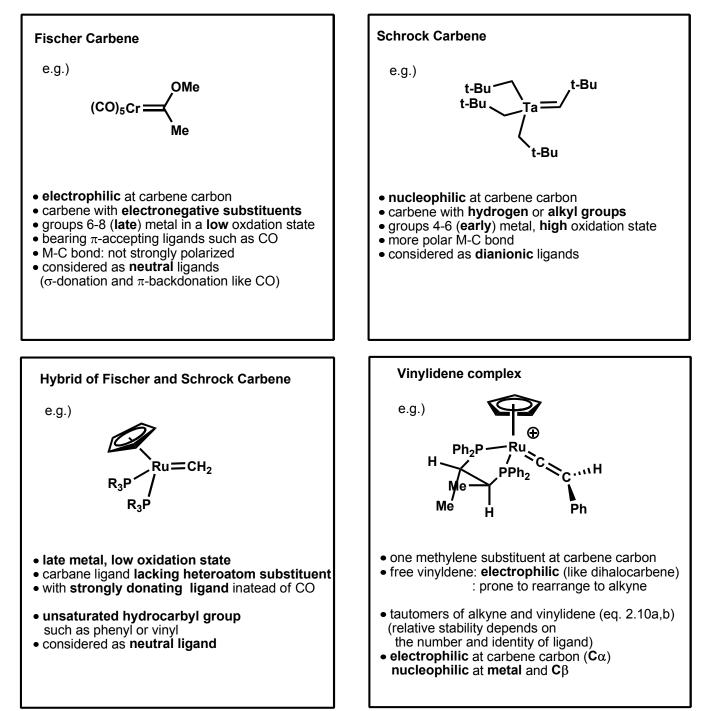
CI Me ₃ P,,,,I 、PMe ₃ Me ₃ P ✓ I [°] PMe ₃ CI	Me Me
trans	
δ: - 6.63 (s)	δ:

2.3.7 Heavier Congeners of Phosphorus Ligands

Organometallics Study Meeting #6

2.4 Carbenes


- 2.4.1. Classes of Free and Coordinated Carbenes
 - 2.4.1.1 Properties of Free Carbenes

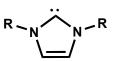

carbenes with electron negative substituents with only hydrogen or alkyl groups

nitrogen acts as strong π -donor to unoccupied p-orbital

more stable in singlet state

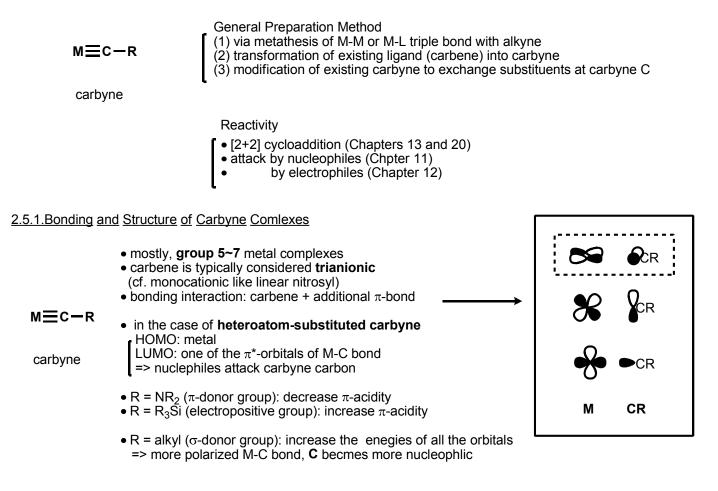
triplet state

siglet carbene


- closely related with CO
- donate two electrons to metal through a dative bond
- accept d-electrons in π -backbonding
- often have weak p-bonds (large ΔE bet. d_M and p_{π})
- low rotation barrier (8~10 kcal/mol)

- considered as dianionic
- donation of two electron pairs to metal (σ, π)

NHC

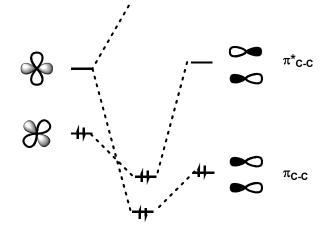


- strong σ -donor, weak π -acceptor σ : carbon is soft and less electronegative than most heteroatom Lewis base
- π : p-orbital of carbene carbon participates in strong π -bonding with amino subsituents • like phosphine, but stronger σ -donor
- two fold symmetry ("fences rather than cones")

2.4.3. Spectroscopic Characteristics of Carbene Complexes

¹³ C	Fischer	X = O X = N	290 ~ 365 ppm 185 ~ 280 ppm
	Schrock		240 ~ 330 ppm
¹ H			10 ~ 20 ppm

2.5 Transition Metal Carbyne Complexes



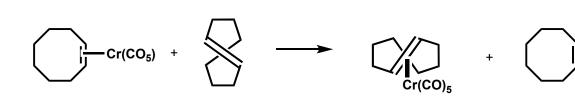
2.5.2.Spectroscopic Characteristics of Carbyne Comlexes

¹³C: 200 ~ 350 ppm, triple bond vibration: 1250 ~ 1400 cm⁻¹

2.6 Organic Ligands Bound Through More than One Atom

2.6.1 Olefin Comlexes

Chatt-Dewar-Duncanson model

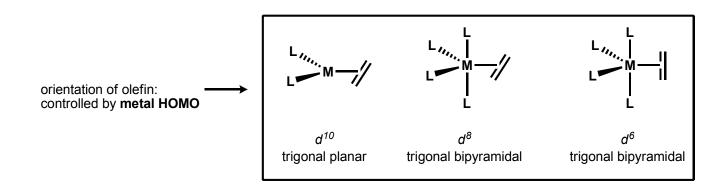

2.6.1.1 Stability of Metal-Olefin Comlexes

- electron-rich metal => olefin bering EWG (e.g. Ni(0))
- **M** in higer oxdation state (with charges greater than +1 and *d*⁰): olefin complexes are **less common** (cf. olefin polymerization)
- also sensitive to **steric effects** (binding: ethylene > α -olefins)

2.6.1.2 Structures of Metal-Olefin Comlexes

2.6.1.2.1 Structural Changes Upon Binding

* backbonding: $sp^2 \Rightarrow sp^3$


trans-cycloctene

cis-cycloctene

2.6.1.2.2 Structural Changes Upon Binding

 σ -donor + π -acceptor

electronic preference for orientaion about M-olefin axis

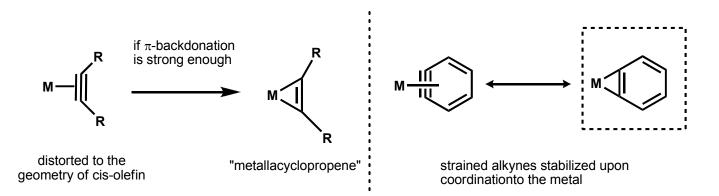
2.6.1.3. Spectral Properties of Metal-Olefin Comlexes

NMR

• electron-poor metal complex: close to free olefin

• electron-rich metal complex: upfield shift

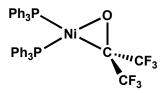
2.6.2 Alkyne Comlexes



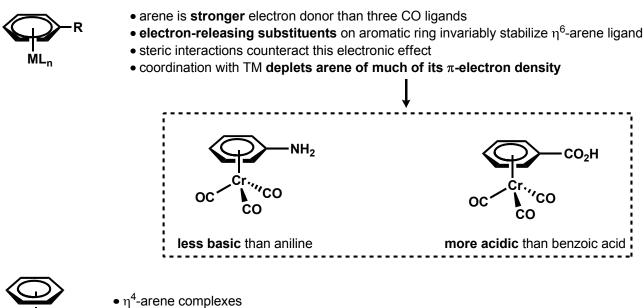
 π -Donation

π-Backbonding

2.6.2.1 Structural Characteristics of Alkyne Complexes



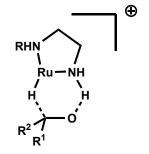
2.6.3 Complexes of Organic Carbonyl Compounds


• electron-rich metal fragments (low-valent late metal)

bind to aldehyde/ketone in n²-fassion

e.g.)

2.6.4 n⁶⁻ Arene and Related Complexes


- η⁴-arene complexes
- distortion from planarity, large loss of aromaticity
- prepared by reduction of (η^6 -arene) dication

2.7 Complexes of Ligands Bound Through N, O and S

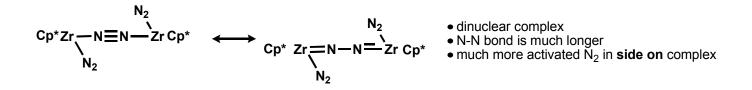
2.7.1 Neutral Nitrogen Donor Ligands

2.7.1.1 Amine Complexes

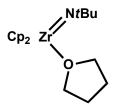
- ammonia, amines: classic ligand in coordination chemistry
- these Lewis bases are less commonly used
- NH proton of coordinated amine tend to be reactive
- tertiary amines bind weakly (hard-soft mismatch)
 tertiary amins are morer sterically congested than tertially phosphine (shorter C-N bond, larger C-N-C angle)

* examples: figure 2.39

- nitrogens in pyridine, imine, oxazoline are softer
- heteroarenes can act as π-acceptors

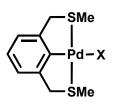

- they lack reactive N-H bond
- monoimines tend to be reactive species

2.7.1.3. Dinitrogen Complexes

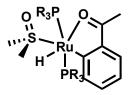

- \bullet N_2 is isoelctronic with CO, binds most often as an $\eta^1\mbox{-ligand}$
- less basic than CO, less π -acidic than CO

 $M - N_2$

- π -accepting ability of N₂ is stronger than σ -donating propety
- N2 is generally more electron-accepting than it is electron-donating
- most dinitrogen complexes contain electron-rich metal center
- mostly, mononuclear complex, weak interaction



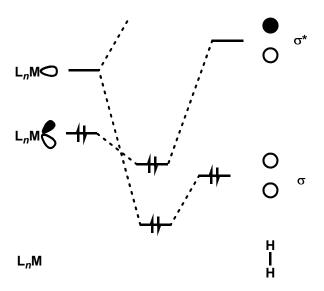
2.7.1.4. Complexes of Neutral Oxygen Donors



- H₂O, MeOH, THF, DME, acetone DMSO, Ar₃PO etc.
- even dessociate readily from more-oxophilic high-valent transition metals
- R₃PO tend to bind more strongly than R₂O
- despite of weak bindings, these can influence reaction chemistry (without forming stable complexes)
- THF, DME, phosphine oxides are common (Figure 2.44)
- dissociate readily => temporaly masking of reactive intermediate
- bindentate ligand with mixture of P and OR (figure 2.45)

2.7.1.5. Complexes of Neutral Sulfur Donors

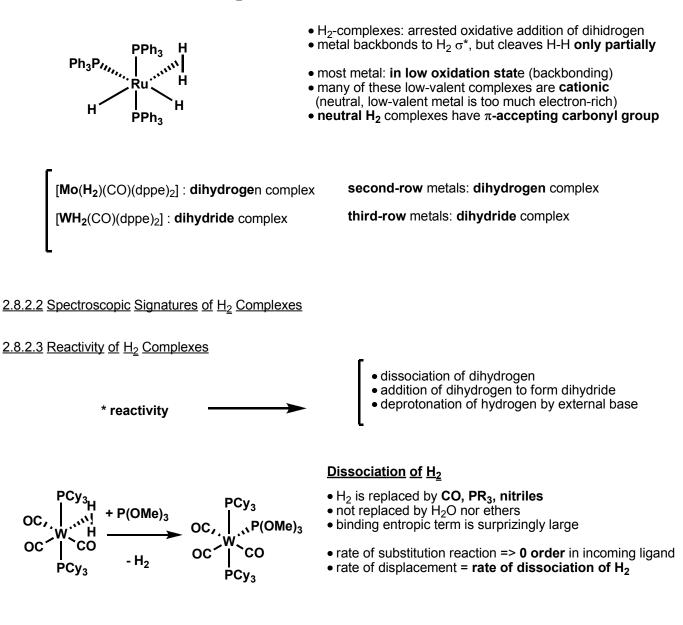
- neutral sulfur donors: softer and more polarizable than neutral oxygen donors
- thioethers and sulfoxides are most common
- trans influence of neutral sulfur donor is greater than neutral oxygen donor compatible with amine
- M-SR₂ is stronger than M-NR₃ bond, but weaker than M-PR₃ bond
- spectrochemical series: PR₃ > SR₂ > Cl⁻

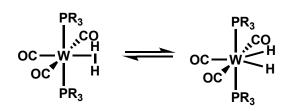


DMSO

- to low-valent late metals: through electron pair on sulfur
- to harder high-valent metals: through electron pairs on oxygen
- DMSO can **induce isomerization** of square-planar complexes to nonrigid five-coordinate intermediate

2.8 Sigma Complexes

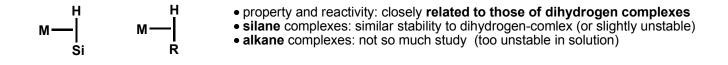

2.8.1. Overview of Sigma Complexes



- dihydrogen, alkanes, silane, boranes (X-H bond)
- electron donation from X-H σ -bonding orbital backdonation from metal to X-H σ^* -orbital
- like olefin's Chatt-Dewar-Duncanson model
 (σ-donation from π-bonding and backbonding to π*-orbital)
- bonding intercation is much weaker than olefin
- σ -bonding enegy is in lower (less basic)
- σ *-bonding is higher in energy (less π -acidic)
- ΔE between σ and σ* is too large?
 -> complexation => longer X-H bond => less ΔE

2.8.2 Dihydrogen Complexes

2.8.2.1 Properties that Lead to Stable H₂ Complexes

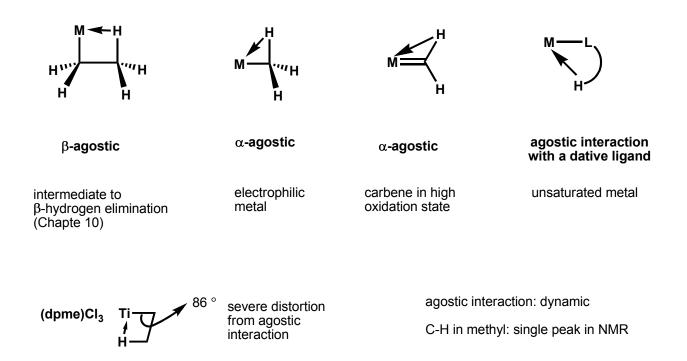


Addition of H₂ to form dihydride

- oxidative addition to cleave H-H bond
- \bullet in many cases. equibrium between H_2 and dyhydride
- barrier: structural change to accomodate two hydrides
- in some cases: dihydrogen as kinetic product at low temp.

2.8.3 Alkane and Silane Comlexes

2.8.3.1 Stability Relative to H₂ Complexes


silane complexes: similar stability to dihydrogen complexes (despite greater steric effect)
 ⇐ Si-H bond is more basic than H-H or R-H bond
 ⇐ Si-H bond is much longer weaker, has lower energy σ*-orbital

• alkane complexses: less stable than H₂ or Si-H complexes \Leftarrow steric effect is not compensated by smaller ΔE between σ and σ^* -orbitals

2.8.3.2 Evidence for Alkane Complexes

2.8.3.3 Intramolecular Coordination of Aliphatic C-H Bonds (Agostic Interactions)

