Organometallic Study Meeting

Chapter 17. Catalytic Carbonylation

17.2. Carbonylation to Produce Acetic Acid

17.2.1. Rh-catalyzed carbonylation of MeOH to produce AcOH (Monsanto Process)

17.2.2. Rh-catalyzed carbonylation of MeOAc to produce Ac₂O (Eastman Process)

17.2.3. Ir-catalyzed carbonylation of MeOH to produce AcOH (Cativa Process)

17.3. Hydroformylation

17.3.1. Overview

17.3.2. HCo(CO)₄ catalysis (Oxo process)

high pressure of CO is required to suppress cat decomp (formation of Co cluster or metallic Co)

all reactions have the potential to be reversible

I/b ratio = 3~4 : 1 at best

17.3.3. HCo(CO)₃(PR₃) catalysis

$$R \longrightarrow \frac{H\text{Co(CO)}_3(PR_3)}{H_2, \text{ CO (30 atm)}} \qquad R \longrightarrow H \qquad PR_3 = \frac{C_{20}H_{41}}{\text{or}} \qquad Or \qquad P \longrightarrow C_{20}H_{41}$$

$$n: i = 8:1 \qquad \text{stable, high MW phosphine (industrially fabored)}$$

$$n: i = 8:1 \qquad OH 75\%$$

$$2:1 H_2: CO \qquad OH 75\%$$

$$2:1 H_2: CO \qquad OH 75\%$$

$$2:1 H_2: OH \qquad OH 75\%$$

$$30 \text{ atm} \qquad 14\%$$

C=C isomerization is very fast.

17.3.4. Rh catalysis

commercialized in 1970s lower pressure improved I/b less byproduct lab-scale application

<Mechanism>

$$\begin{array}{c} \text{Rh(CO)}_2(\text{acac}) \\ \text{PPh}_3 \\ \text{Product} \\ \text{R} \end{array} \begin{array}{c} \text{Ph}_3 \\ \text{PPh}_3 \\ \text$$

<Phosphine Effect>

Piet W. N. M. van Leeuwen et al. JACS 1998, 120, 11616.

Table 7. Results of the Hydroformylation of 1-Octene at 80 °Ca

ligand	R	σ_{p}	1:b ratio ^b	% select ^b	% isomer ^b	$tof^{b,c}$
1	N(CH ₃) ₂	-0.83	44.6	93.1	4.8	28
2	OCH ₃	-0.27	36.9	92.1	5.3	45
3	CH_3	-0.17	44.4	93.2	4.7	78
4	H	0.00	50.0	93.2	4.9	110
5	F	0.06	51.5	92.5	5.7	75
6	C1	0.23	67.5	91.7	6.9	66
7	CF_3	0.54	86.5	92.1	6.8	158

conditions:

 $CO/H_2 = 1$, $P(CO/H_2) = 20$ bar, ligand/Rh = 5 substrate/Rh = 637, [Rh] = 1.00 mM

<Phosphile Ligand>

Rh(CO)₂(acac)
Diphosphite
H₂, CO
$$70 \, ^{\circ}$$
C, 5 atm

 $n: i = 53:1$

MeO
OMe

t-Bu

 t -Bu

 t -Bu

 t -Bu

- # high I/b ratio
- # faster reaction
- # suppressed side reaction (hydrogenation)

than PAr₃

Et_O

70%

$$\begin{array}{c|c}
O & Rh(CO)_2(acac) \\
\hline
Diphosphite H_2, CO \\
\hline
60 °C, 5 atm
\end{array}$$

$$\begin{array}{c|c}
O & O \\
H & \\
\hline
87\% & n: i > 40: 1
\end{array}$$

<Scope>

R = OAc Rh₄(CO)₁₂, 217 bar R Rh₄(CO)₁₂, 100 bar
$$\frac{R = OEt}{Rh_4(CO)_{12}, 100 \text{ bar}}$$
 Olefin with EWG gives branched product.

<Enantioselective reaction>

challenges

branched product should be selectively formed. simple alkene's directing nature is small. racemization must be suppressed. chiral phosphine is far from reaction space.

successful ligand families

Babin & Whiteker

(S,R)-BINAPHOS Nozaki & Takaya

van Leeuwen & Claver

scope with Rh-BINAPHOS

Substrate	Product	% ee	
≫ CN	*CN CHO	66	
Ph	Ph * CHO	98.3	
C ₄ H ₉	C ₄ H ₉ * CHO	90	
	∕⊸* [′] cHO	89.9	
Ph OH	Ph *O	88	
	• сно	97	
$\langle \overline{\rangle}$	CHO	68	
OAc	OHC * OAc	92	
S ^t Bu	OHC ★ S ^f Bu	90	
TBSO H H	TBSO H H CHO	89ª	

17.4. Hydroaminomethylation

targeting fine chemicals
$$\begin{array}{c} \text{Cl} \\ \text{Cl} \\ \text{All pip razole} \\ \text{Aripiprazole} \\ \text{67\% yield, 37:1 l/b} \\ \text{OH} \\ \end{array}$$

<Mechanism>

$$R^{1} \xrightarrow{\text{CHO}} R^{1} \xrightarrow{\text{CHO}} R^{1} \xrightarrow{\text{CHO}} R^{1} \xrightarrow{\text{R}^{2} = H} R^{1} \xrightarrow{\text{NR}^{3}} R^{1} \xrightarrow{\text{NR}^{3}} R^{1} \xrightarrow{\text{NR}^{3}} R^{1} \xrightarrow{\text{NR}^{2}R^{3}} R^{1} \xrightarrow{\text{NR}^{2}R^{3$$

<u>challenges</u>

prevent catalyst deactivation with excess amines

e-rich cat enough to reduce e-rich enamine not to prevent hydroformylation

17.5. Hydrocarboxylation / Hydroesterification

$$R \rightarrow + R'OH \qquad \begin{array}{c} Pd/L \text{ cat.} \\ a \text{cid co-cat.} \\ CO \end{array} \qquad \begin{array}{c} O \\ R \rightarrow OR' \end{array} \qquad \begin{array}{c} O \\ OR' \end{array} \qquad \begin{array}{c} O \\ R \rightarrow OR' \end{array}$$

<Scope>

intramolecular rxn
$$Ph \longrightarrow OH + CO/H_2 \xrightarrow{Pd_2(dba)_3, CHCl_3} + CO/H_2 \xrightarrow{(-)\text{-bppm}, CH_2Cl_2} 100 \, ^{\circ}C, 800 \, psi$$

$$Ph_2P \longrightarrow PPh_2$$

$$PPh_2$$

high FG tolerance

R = H: methyl acrylate R = Me: methyl methacrylate L = 2-(6-Me-Py)PPh₂

<Mechanism>

depends on the ligand nature.

(more probable in Pd/DTBPMB)

17.6. Carbonylation of Epoxides / Aziridines

$$\begin{array}{c|c}
X + CO \\
R \\
(X = O \text{ or NR'})
\end{array}$$

$$\begin{array}{c}
\bigcirc \\
\text{Co(CO)}_4 \text{ cat.} \\
\text{acid co-cat.}
\end{array}$$

<Scope> Alper's system

R = H, Me, "Bu, "Hex, CH2Cl, CH2O'Pr, (CH₂)₂CH=CH₂ or (CH₂)₄CH=CH₂

(PPN = bis(triphenylphosphine)iminium)

Coates' system (5 = $[Cr^{III}(Et_8-porphyrinato)(thf)_2][Co(CO)_4]$)

R = SiMe2 Bu, Bn, CH2CH=CH2 or furfuryl

At 60 °C: R = $(CH_2)_xOC(O)^nPr(x = 2 \text{ or 3})$, $(CH_2)_2CO_2^nPr \text{ or } (CH_2)_8C(O)NMe_2$ At 40 °C: R = CH2OAc, CH2OC(O)"Pr or CH2OC(O)Ph

double carbonylation

R1 = H or Me $R^2 = H$, Me, Et, decyl, CH_2O^nBu , $CH_2OSiMe_2^tBu$ or $(CH_2)_2CH = CH_2$

Al/Co catalyst 1 =
$$\begin{bmatrix} Co(CO)_4 \end{bmatrix}^{\circ} = 1.2 C_6 H_4$$

aziridines

R1 = Bn, CH2CO2Et, Pr, or CH2CH=CH2

 $R^2 = CH_2OSi^1BuMe_2$ or H

 $R^3 = H$, $\tilde{C}H_2NH_2$, $CH_2OSi^tBuMe_2$, Me, or $CH(OH)CH_2CH=CH_2$

addition of Lewis acid acclerate the rxn.

ring-opening carbonylation

$$R$$
 + CO + H_2 Catalyst R + R OH $Co_2(CO)_8 + Ru_3(CO)_{12}$ system R + R OH R Co₂(CO)₈ + 1,10-Phen + BnBr system R W/o R W/o R

<Mechanism>

$$1 = \frac{2L}{2 \text{ THF}} L - \frac{1}{A} = \frac{-L}{L} L - \frac{1}{A} = \frac{1}{A$$

17.7. Carbonylation of Organic Halides (Carbonylative Cross Coupling)

scope is similar to that of cross coupling. **R** = alkyl is remains to be developed.

<Scope>

review: Nicolaou, K. C. et al. ACIE 2005, 44, 4442.

<Mechanism>

$$L_{n}Pd(0) \xrightarrow{RX} L_{n}Pd \xrightarrow{R} CO \xrightarrow{CO} \begin{bmatrix} CO \\ L_{n}Pd \xrightarrow{X} \end{bmatrix} \xrightarrow{Path a} \begin{bmatrix} L_{n}Pd \xrightarrow{R} \\ CO \end{bmatrix} \times \frac{HNu, Base}{-HX \cdot Base} \xrightarrow{L_{n}Pd} \frac{R}{C - Nu} \xrightarrow{DO} \xrightarrow{CO} \frac{L_{n}Pd}{X} \xrightarrow{DO} \xrightarrow{CO} \frac{R}{C - Nu} \xrightarrow{DO} \xrightarrow{CO} \xrightarrow{CO} \xrightarrow{CO} \frac{R}{C - Nu} \xrightarrow{DO} \xrightarrow{CO} \xrightarrow{CO} \frac{R}{C - Nu} \xrightarrow{DO} \xrightarrow{CO} \xrightarrow{CO}$$

17.8. Copolymerization of CO and Olefins

similar conditions of hyroesterification in the absence of acid co-catalyst weakly nucleophilic alcohol or aprotic solvent is preferred.

Origin of perfect alteration

Catalyst decomposition

$$\begin{bmatrix} P & Pd - P \\ P - Pd & P \end{bmatrix} = PPh_2$$

or generation of Pd(0) metal from Pd hydride

Figure 17.12.

One catalyst decomposition product identified in the copolymerization of CO and olefins.

CO insertion into M-acyl bond is thermodynamically unfavorable.

Chain Termination

compered to styrene, but usually not high degree

ketal is final product.

17.9. Pauson-Khand Reactions (PKR)

discovered in eary 1970s typical conditions: stoichiometric Co₂(CO)₈

additive effect

catalytic conditions

1,2-dichloroethane 83 °C, 90 min, 85%

 $Cp_2Ti(CO)_2$, $Ru_x(CO)_y$, $[Rh(CO)_2Cl]_2$, Fe, Pd, $Ir(cod)Cl(PPh_3)$, $Mo(dmf)_3(CO)_3$, $W(CO)_5(thf)$ also showed catalytic activity.

* Co₂(CO)₈ is thermally unstable

Catalytic asymmetric PKR

Intermolecular PKR : difficult to control the regioselectivity -

chelating auxiliary is the choice.

55-91%

<u>Application in Total Synthesis</u>

Jamison & Schreiber et al.: synthesis of (+)-epoxydictymene

<Mechanism> Magnus, P. et al. TL 1985, 26, 4851.

OC CO
H Co CO,
$$+H_2C=CH_2$$
 $+CO$, $-H_2C=CH_2$
Ligand substitution

 $+CO$
 $+$