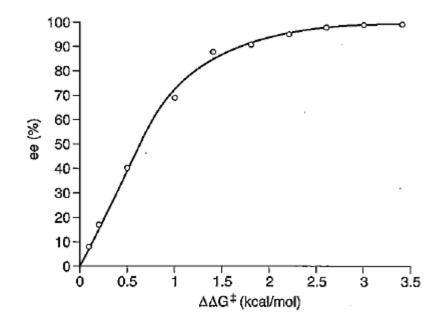
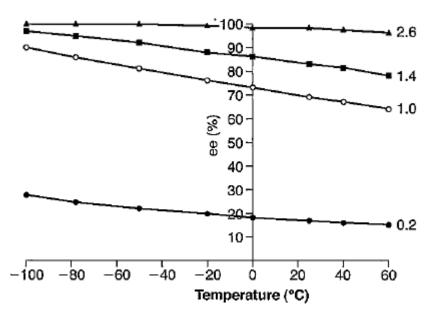
Chapter 14. Principles of Catalysis

14. 1. General Principles

- 14.1.1. Definition of a Catalyst
- 14.1.2. Energetics of Catalysis
- 14.1.3. Reaction Coordinate Diagrams of Catalytic Reactions
- 14.1.4. Origins of Transition State Stabilization
- 14.1.5. Terminology of Catalysis
- 14.1.6. Kinetics of Catalytic Reactions and Resting States
- 14.1.7. Homogeneous vs. Heterogeneous Catalysis


14. 2. Fundamentals of Asymmetric Catalysis


- 14.2.1. Importance of Asymmetric Catalysis
- 14.2.2. Classes of Asymmetric Transformations
- 14.2.3. Nomenclature
- 14.2.4. Energetics of Stereoselectivity
- 14.2.5. Transmission of Asymmetry
- 14.2.6. Alternative Asymmetric Processes: Kinetic Resolution and Desymmetrizations

14.2.4. Energetics of Stereoselectivity

Enantomeric ratio = $\frac{[Major enantiomer]}{[Minor enantiomer]} = e^{-(\Delta \Delta G^{2}/RT)}$ (14.11)

- $\Delta\Delta G^{\dagger} = 1.38$ kcal/mol => 10:1 ratio of product (at rt.)
- $\Delta\Delta G^{\dagger} = 2 \text{ kcal/mol} = > 90\% ee$

Figure 14.9.

Enantioselectivity as a function of the energy differences between the diastereomeric transition states $(\Delta\Delta G^{\ddagger})$ at 25 °C.

Figure 14.10.

Enantioselectivity as a function of temperature with $\Delta\Delta G^{\ddagger}$ values of 0.2, 1.0, 1.4, and 2.6 kcal/mol.

14.2.4.1.1 Reaction with a Single Enantioselectivity-Determining Step

• simplest case:

>direct reaction of catalyst. and prochiral substrate.

- >without coordination of subst. to cat. before enantioselectivity-determining step
- atom and group-transfer reactions (epoxidation, aziridination etc.)

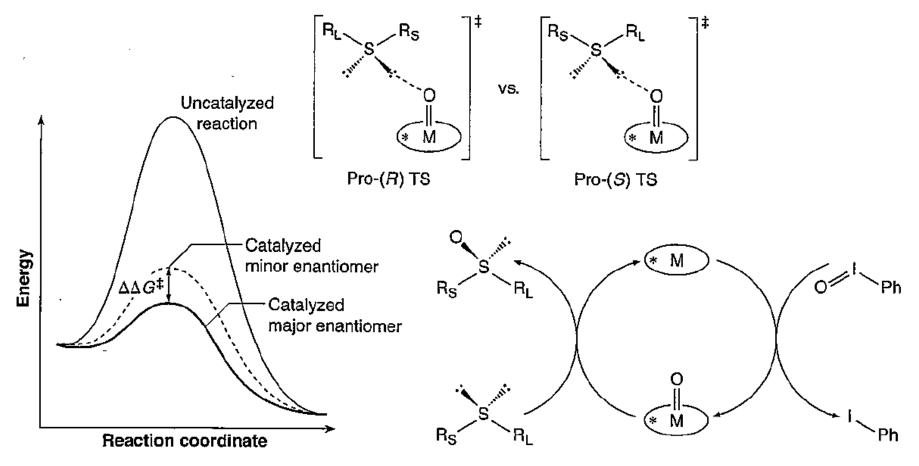


Figure 14.11. Reaction coordinate of the oxidation step in the asymmetric sulfoxidation reaction.

- <u>14.2.4.1.1 Reaction with Revesibility Prior to the Enantioselectivity-Determining</u> <u>Step: The Curtin-Hammett Principle Applied to Asymmetric Catalysis</u>
- Prochiral substrates bind to catalyst in a separate step from enantioselectivitydetermining step (EDS)
- •1) interconversion of I and I' is slow relative to conversion to the product (Scheme 14.12.A) EDS = binding to the prochiral olefin faces to the metal
- •2) interconversion of I and I' is significantly fast: (Scheme 14.12.B) EDS = reaction to form the product (Curtin-Hammett conditions)

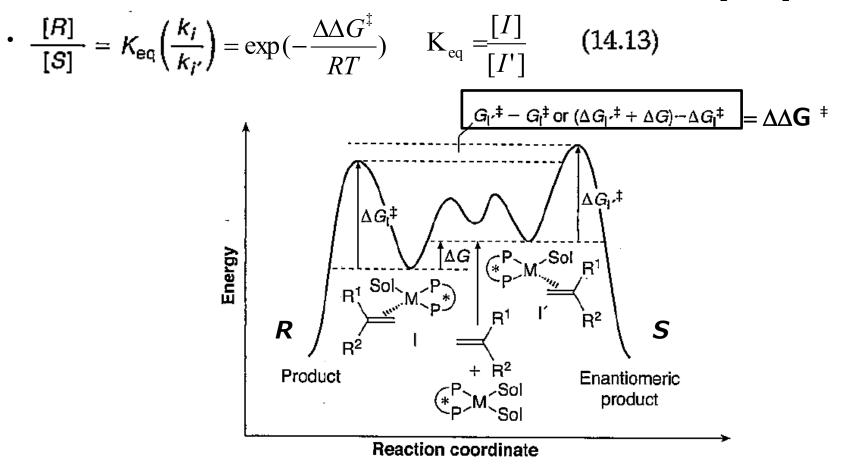
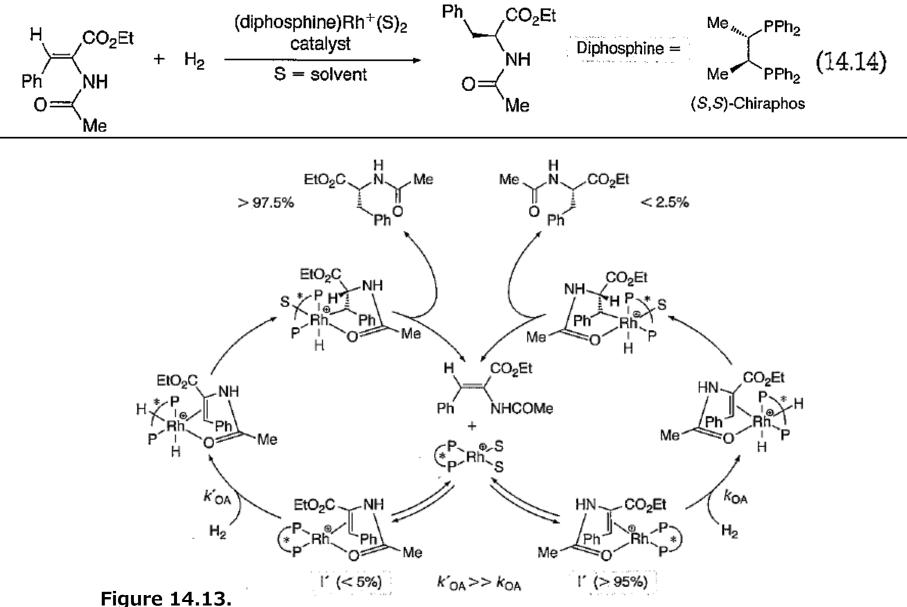
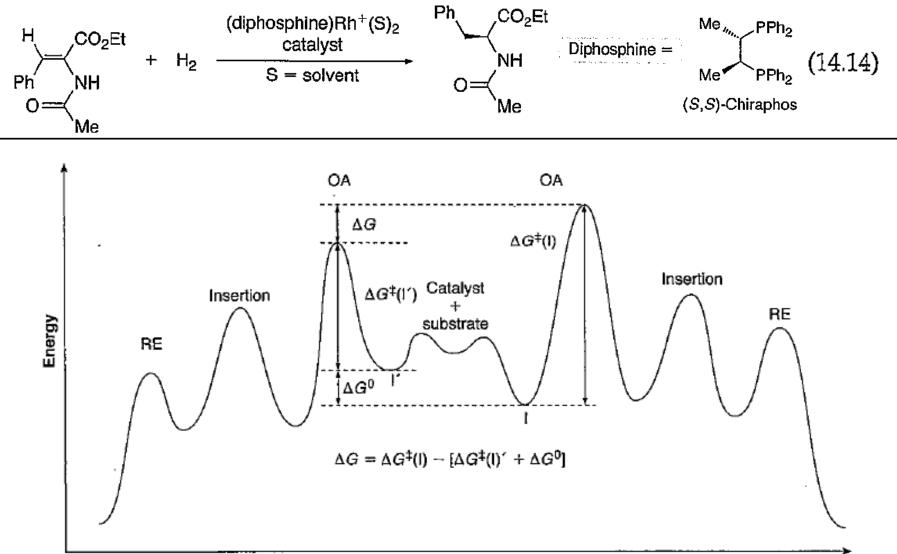


Figure 14.12.

Reaction coordinate diagrams illustrating reactions of diastereomeric olefin complexes. In scenario A, olefin binding is enantio-determining. In B, the diastereomeric olefin complexes are in rapid equilibriun and enantio-determination is the conversion of the olefin adducts to products. B is an example of Curtin-Hammett conditions.


14.2.4.1.1 The Curtin-Hammett Principle

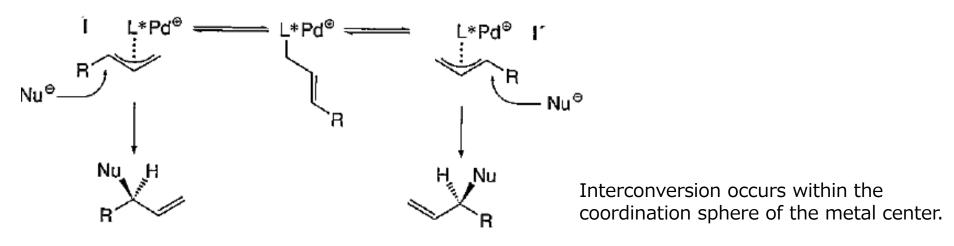
• when competing reaction pathways <u>begin from rapidly interconverting isomers</u>, \Rightarrow product ration is determined by the relative heights of the highest barriers leading to the two different products ($\Delta\Delta G = G_I = G_I = G_I$)


enantioselectivity is controlled by the relative energy of the two diastereomeric TSs (rather than the stabilities of the two diastereomeric intermediates) $_6$

14.2.4.1.3.2.1 Curtin-Hammett : Example 1: Asymmetric Hydrogenation 1

Mechanism of the asymmetric hydrogenation, illustrating a reaction meeting the Curtin-Hammett conditions

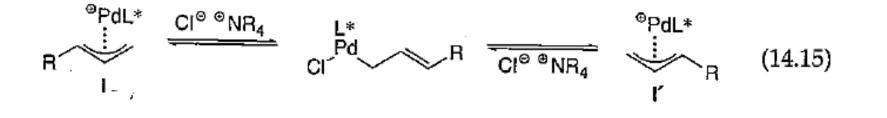
14.2.4.1.3.2.1 Curtin-Hammett : Example 1: Asymmetric Hydrogenation 2

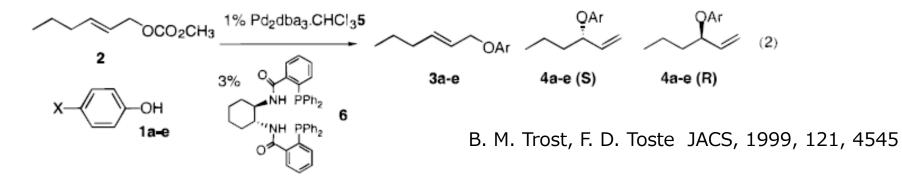


Reaction coordinate

Figure 14.14.

Energy diagram for the asymmetric hydrogenation reaction under Curtin-Hammett conditions. The enantioselectivity-determining step is the oxidative addition (OA) of hydrogen.

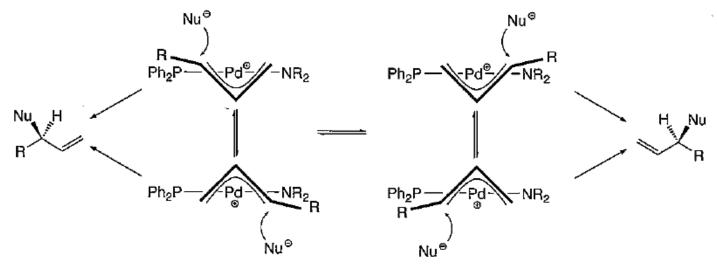

14.2.4.1.3.2.2 Curtin-Hammett : Example 2: Asymmetric Allylic Alkylation 1


Figure 14.15.

Interconversion of the diastereomeric π -allyls **I** and **I'** occurs via an η^1 -allyl. The enantioselectivitydetermining step depends on the relative rates of π - σ - π isomerization and nucleophilic attack.

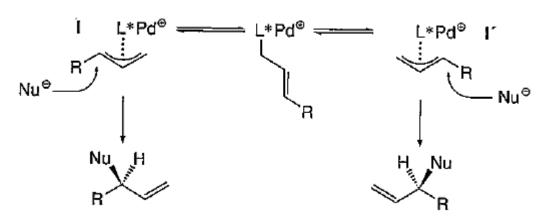
- dilute conditions will help to achieve Curtin-Hammett conditions (unimolecular v.s. bimolecular)
- Halide ions catalyze the isomerization
- reversed enantioselectivity in the presence/absence of additives

14.2.4.1.3.2.2 Curtin-Hammett : Example 2: Asymmetric Allylic Alkylation 2


Table 4. Effect of Halide Ion on EnantiosEnantioselectivity in the Reactionwith Chiral Substrate 8 (Eq 4)						Г 1+ о ⁻
entry	solvent (concn ((M))	additive	4a:3a	% ee (R)		
1	$CH_2Cl_2(0.5)$		67:33	36		
2	$CH_2Cl_2(0.5)$	3% TBAT	71:29	50	R* * *H	
3	$CH_2Cl_2(0.5)$	3% Bu ₄ N ⁺ Cl ⁻	73:27	57		10
4	$CH_2Cl_2(0.5)$	30% Bu ₄ N ⁺ Cl ⁻	80:20	65		4
4 5	$CH_{3}CN(0.5)$		80:20	53	B₄N ⁺ X [−]	B₄N ⁺ X [−]
6	CH ₃ CN (0.5)	3% Bu ₄ N ⁺ Cl ⁻	78:22	57		l)
7	$CH_2Cl_2(0.1)$	30% Me ₄ N ⁺ Cl ⁻	86:14	69		_
8	$CH_2Cl_2(0.1)$	30% Et ₄ N ⁺ Cl ⁻	84:16	76	[L, L] + X ⁻	[L, ,L] ⁺ X ⁻
9	$CH_2Cl_2(0.1)$	30% Bu ₄ N ⁺ Cl ⁻	84:16	83	Pd -	Pď H ₄ H _ O [−] R₄N ⁺
10	$CH_2Cl_2(0.1)$	15% Bu ₄ N ⁺ Cl ⁻	84:16	74	H tBuOCO ₂ R ₄ N ⁺	
11	$CH_2Cl_2(0.1)$	30% Hex ₄ N ⁺ Cl ⁻	84:16	86		
12	$CH_2Cl_2(0.1)$	30% Bu ₄ N ⁺ ClO ₄ ⁻	71:29	59		Ť.
13	$CH_2Cl_2(0.1)$	30% Bu ₄ N ⁺ Br ⁻	88:12	77	12	11 ÓCH ₃
14	$CH_2Cl_2(0.1)$	$30\% Bu_4N^+ I^-$	84:16	75		13

- Halide anion + diluted condition => Curtin-Hammett conditions
- Ammonium cation lowers phenol nucleophilicity?

10


14.2.5.1 Effect of C₂ Symmetry

- it was often observed that C₂-symmetric catalyst were most effective
- Kagan: smaller number of metal-substrate adducts and TSs available

Figure 14.16.

The four diastereometric π -allyl complexes containing an unsymmetrical P–N ligand. These four diastereometric complexes can be compared to the two diastereometric π -allyl complexes containing a C_2 -symmetric ligand (Figure 14.15).

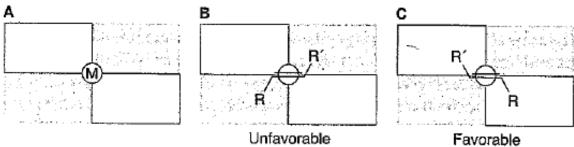


Figure 14.15.

Interconversion of the diastereomeric π allyls **I** and **I'** occurs via an η^1 -allyl. The enantioselectivity-determining step depends on the relative rates of $\pi - \sigma - \pi$ isomerization and nucleophilic attack.

14.2.5.2 Quadrant Diagrams

- generic model for steric biasing of chiral metal-ligand adducts
- shaded: hindered
- white: less hindered

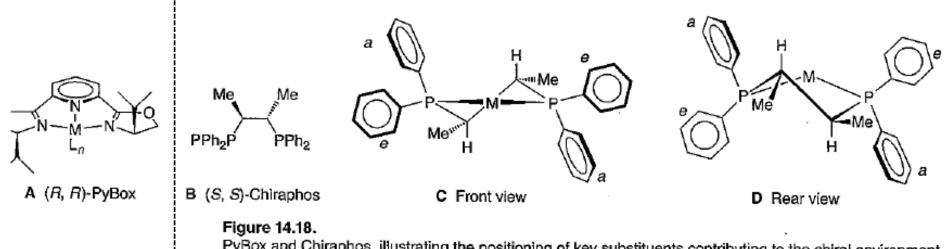


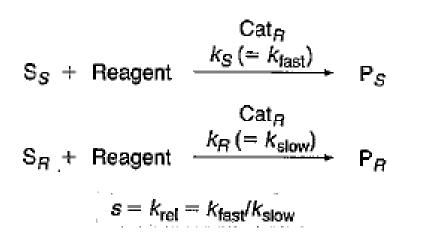
Figure 14.17.

A. Quadrant diagrams for a C_2 -symmetric catalyst. **B.** Unfavorable binding and **C.** favorable binding of an olefin in diastereometric olefin complexes.

- stereogenic centers close to the metal: e.g.. Pybox (Fig. 14.18.A) more distant from metal: e.g. Chiraphos (Fig. 14.18.B)
- chiraphos) Me: pseudo-equatorial

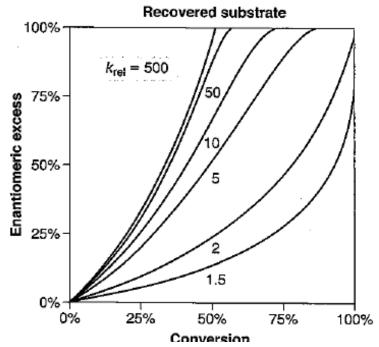
two phenyls: pseudo-axial (edge) + pseudo-equatorial (face)

14.2.6 Alternative Asymmetric Processes: Kinetic Resolutions and Desymmetrizations


- 14.2.6.1. Kinetic Resolutions
- 14.2.6.2. Dynamic Kinetic Resolution
- 14.2.6.3. Dynamic Kinetic Asymmetric Transformations
- 14.2.6.4. Asymmetric Desymmetrizations

14.2.6.1. Kinetic Resolutions

Kinetic Resolution (KR)


- reactions that occur at different rates with two enantiomers of a chiral substrate
- do not usually generate additional stereochemistry
- distinguish one enantiomer from another by creating new functionality
- maximum yield: 50%
- best option when racemate is inexpensive,

no practical enantioselective route is available

Figure 14.23.

Kinetic resolution involving the reaction of a racemic substrate, achiral reagent, and a resolved catalyst. The relative rate of reaction of the enantiomers determines the efficiency of the KR.

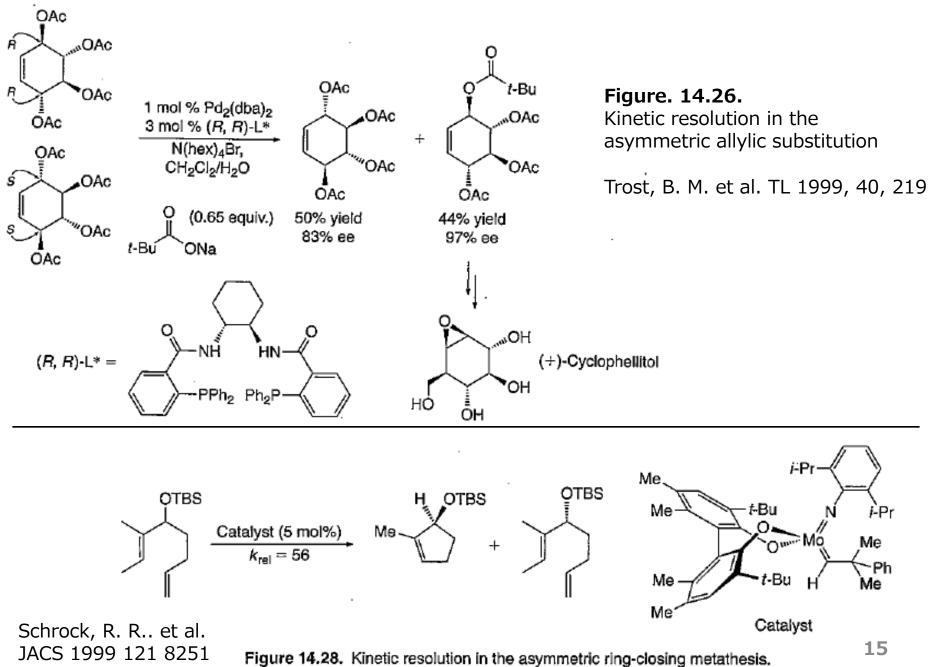
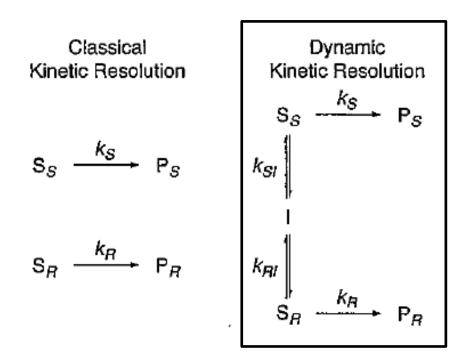


Figure 14.24.

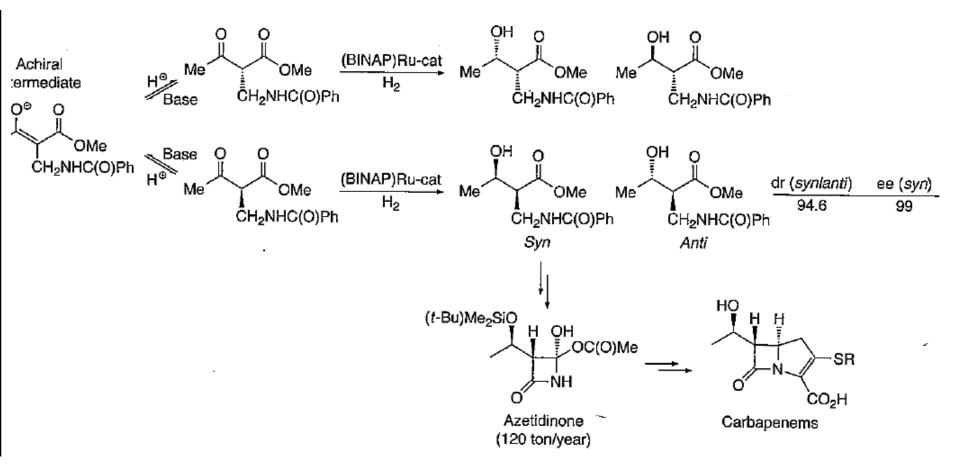
Graph representing the ee (%) as a function of conversion (%) for different k_{rel} values.


14

14.2.6.1.3. Examples of Kinetic Resolutions

Dynamic Kinetic Resolution (DKR)

- KR in a fashion that allows the conversion of both enantiomers of the reactant into a single enantiomer of the product
- KR with a rapid racemization of the chiral substrate thorough an achiral intermediate (=I) or transition state


•In a typical DKR: $k_{rac} \ge k_{fast}$

• if substrate fully equbriuming and $k_{fast}/k_{slow} \sim 20 => ee \sim 90\%$

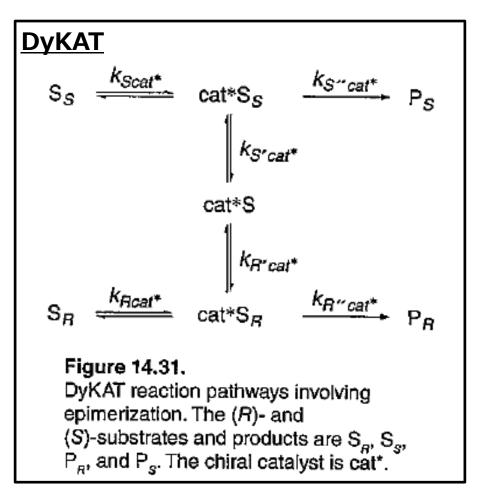
Figure 14.29.

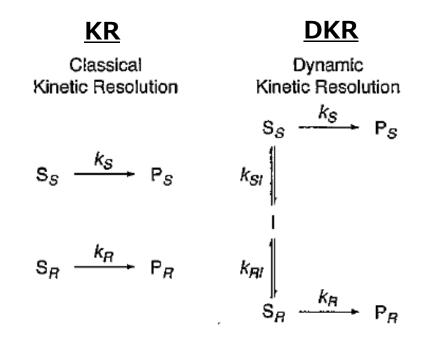
Comparison of a classical kinetic resolution with a dynamic kinetic resolution. In the dynamic kinetic resolution, I is an achiral intermediate or transition state.

14.2.6.2.1. Examples of Dynamic Kinetic Resolutions

Figure 14.30.

DKR in the asymmetric reduction of α -substituted β -keto esters, illustrating the substrate racemization and the four possible diastereometric products.


Noyori, R. et al. BCSJ 1995, 68, 36


14.2.6.3. Dynamic Kinetic Asymmetric Transformations (DyKAT)

- Mechanism of stereochemical interconversions distinguishes DKR and DyKAT
- **DKR**: catalyst that promotes racemization is achiral

unrelated to resolution step

• DyKAT: interconversion of subst. stereochemistry occurs on asymmetric cat. (epimerization)

Figure 14.29.

Comparison of a classical kinetic resolution with a dynamic kinetic resolution. In the dynamic kinetic resolution, I is an achiral intermediate or transition state. 18

14.2.6.3. Examples of DyKAT

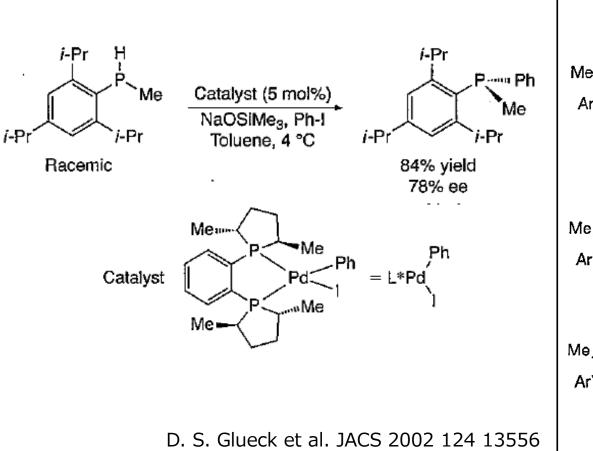
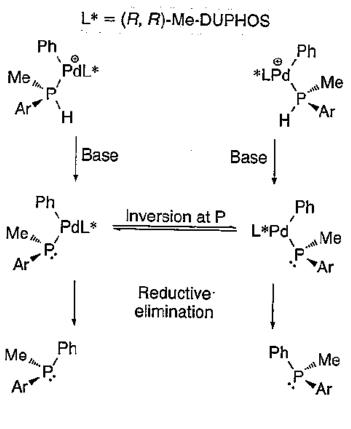
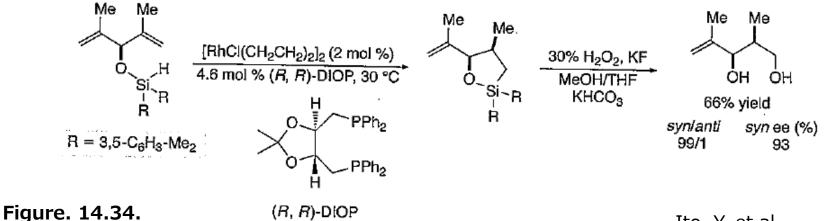
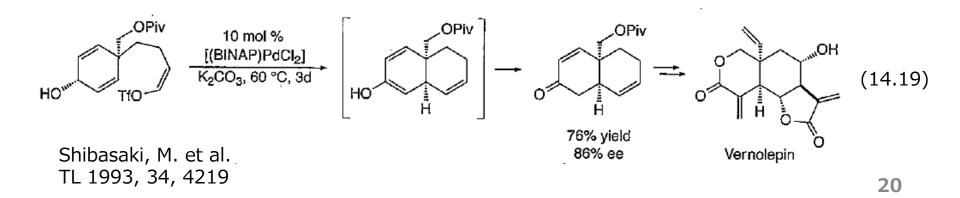



Figure 14.32.


DyKAT of racemic phosphine to generate a tertiary *P*-chirogenic phosphine.


Figure 14.33. Proposed mechanism of the DyKAT, where inversion of phosphorus is faster than reductive elimination.

14.2.6.4. Desymmetrization Reactions

- differential reactivity of enantiotopic FGs of subst. with chiral reagent or cat.
- catalyst differentiates between enantiotopic groups within single substrate (cf. **KR**: differentiate between enantiomers of a racemic substrate)

Desymmetrization of dienes by catalytic asymmetric hydrosilylation. Oxidation of the product provides a valuable 1,3-diol

Ito, Y. et al. TL 1990, 31, 7333