## **Chapter 1: Structure and Bonding**

## 1.1 General Properties of the Ligands

### 1.1.1. Classification of Ligands

| Covalent ligands                  | Dative ligands                                              | Two systems for classification of ligands |                                                                         |                 |                                                                                            |
|-----------------------------------|-------------------------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------|
| 1e⁻ from ligand<br>1e⁻ from metal | 2e⁻ from ligand<br>(e.g. BF <sub>3</sub> -NH <sub>3</sub> ) | (1)                                       | ligand<br><b>II</b><br>neutral (dative) <b>or</b><br>charged (covalent) | (2)<br>20<br>10 | ligand = neutral<br>e⁻ donator: <b>L-type</b> ligands<br>e⁻ donator: <b>X-type</b> ligands |
|                                   |                                                             |                                           |                                                                         | L               | X, L <sub>2</sub> , L <sub>2</sub> X etc.                                                  |

<u>1.1.2.</u> Classification by Number of Electrons Donated to the Metal <u>1.1.3.</u>  $\pi$ -Bonded Ligands

<u>1.1.4.</u> Combinations of  $\sigma$ - and  $\pi$ -Donors <u>1.1.5.</u> Cationic Ligands (nitrosyl)

## 1.2 Properties of the Ligands

```
1.2.1. Oxidation State
```

oxidation state: far from the true charge on the metal e.g. [Fe(CO)<sub>4</sub>]<sup>2-</sup>: Fe(- II), iron atom bears little if any negative charge

### 1.2.2. The Relationship Between Oxidation State and the Number of d-electons

## 1.2.3 Trends in the Properties of Transition Metals

| 1.2.3.1 Trends in Ionization Potentials |  |
|-----------------------------------------|--|

| Ionization Potential (figure 1.9)             | e.g.)<br>Zr(II) | more easily oxidized<br>more basic<br>more electron-rich | than Pd (II) |
|-----------------------------------------------|-----------------|----------------------------------------------------------|--------------|
| (electronegativity, effective nuclear charge) |                 |                                                          |              |

## For middle to late transition metals:

| accessibility of<br>oxidation state<br>higher than +3 | first<br>row | < | second<br>row | < | third<br>row | e.g. Pt(IV) vs Ni(IV),<br>Os(VIII) vs Fe (VIII)     |
|-------------------------------------------------------|--------------|---|---------------|---|--------------|-----------------------------------------------------|
| <b>basicity</b> of<br>metal complexes                 | first<br>row | < | second<br>row | < | third<br>row | $Os(CO)_4(H)_2$ is less acidic than $Ru(CO)_4(H)_2$ |

Chapter 3

≁



### 1.3.5. Isoelectronic and Isolobal Analogies

#### •isoelectronic:

group of metal fragments that have same structure and number of electrons



• isolobal: (by Hoffmann)

group of molecules with **similar frontier orbital** (number, symmetry, approx. energy, and shape)



## $N \leq 12$

- hybridization of each M-L bonds: sd<sup>n-1</sup>
- remaining electrons occupy other pure d orbitals to make metal lone pairs



N > 12

- considered as hypervalent
- give rise to delocalized 3c-4e<sup>-</sup> bonding (3 center-4-electrons)
- every pair of electrons greater than 12 requires one 3c-4e<sup>-</sup> bonding interaction
- m = 1/2 \* (N-12)•  $m \times (3c-4e^{-} \text{ bond}) => \text{ sd}^{m-1}$  hybridization
- e.g.) [PtH<sub>6</sub>]<sup>2-</sup> (N = 18, n = 6)
  three 3c-4e<sup>-</sup> bonds, sd<sup>2</sup> hybridization
  remaining 6e<sup>-</sup> are in metal's d-orbital
- 1.3.7.π-Bonding in Organotransition Metal Complexes
  - 1.3.7.1. π-Bonding in CO and Its Analogs
  - 1.3.7.2. π-Bonding in Carbene and Carbyne Complexes

**N** : the number of total electrons **n**: the number of ligands





sd<sup>1</sup> hybridization

sd<sup>2</sup> hybridization





sd<sup>3</sup> hybridization

sd<sup>5</sup> hybridization

MO, π-backdonation



 $\bullet$  one  $\sigma\text{-orbital}$  and one  $\pi\text{-orbital}$ 

• L:  $\sigma$ -donor and  $\pi$ -acceptor



carbyne

- $\bullet$  one  $\sigma\text{-orbital}$  and two  $\pi\text{-orbital}$
- two d<sub>M</sub> interact with two p<sub>L</sub>
- carbyne ligand is often assigned as trianionic
- L:  $\sigma\text{-donor}$  and two  $\pi\text{-donor}$



M-O-C angle ~  $180^{\circ}$  sp hybridization at O

planar at nitrogen sp<sup>2</sup> hybridization at N

other  $\pi$ -donors: halides oxide, nitride ligands

## 2.1 Introduction

Chapters 2-4: presents illustrative summary of the types of complexes **Chapter 2**: **steric and electronic properties of neutral ligands** (Chapters 3&4: formally anionic ligands)

## 2.2 Carbon Monoxide and Related Ligands

2.2.1. Properties of Free Carbon Monoxide

• small dipole moment with negative end located on carbon

со

- strong vibration in IR at 2143 cm<sup>-1</sup>
- neutral ligand, commonly binds to metal C's lone pair electrons
- normally binds to one metal, but bridging coordination is possible (M-C-M angle is much less than 120°)

# 2.2.2. Types of Metal Carbonyl Complexes

# Preparation of metal-carbonyl complexes



polynuclear carbonyl complexes

| Fe(CO) <sub>5</sub> | Os(CO) <sub>5</sub> | Os <sub>3</sub> (CO) <sub>12</sub> | homoleptic carbonyl complexes in 2nd and 3rd row  |
|---------------------|---------------------|------------------------------------|---------------------------------------------------|
| stable              | much less stable    | more stable                        | <b>polynuclear structure</b><br>is more favorable |

Classification of metal carbonyl complexes: Figure 2.2

# 2.2.3. Models for CO Binding: Introduction of Backbonding

• CO binds strongly to **electron-rich**, **low valent** metals (backbonding, soft metal and soft ligand)

## 2.2.6. Thermodynamics of the M-CO Bonds

## Table 2.3

- $Cr(CO)_6 < Mo(CO)_6 < W(CO)_6$
- $Ni(CO)_4 < Cr(CO)_6$
- Ir(P<sup>*i*</sup>Pr<sub>3</sub>)<sub>2</sub>CI(CO) (particulary strong)

higher enegy of orbitals, backdonation third row, electron-rich alkylphosphine

## 2.2.7. Isoelectronic Analogs of CO: Isocyanides and Thiocarbonyls

| C <b>⊒</b> N—R | <ul> <li>stronger σ-donor, weaker π-acceptor than CO</li> </ul> |
|----------------|-----------------------------------------------------------------|
| isocvanide     | <ul> <li>weaker C-X π-bond than CO</li> </ul>                   |

## 2.3 Dative Phosphorous Ligands and Heavier Congeners

2.3.1 Tertiary Phosphines and Related Ligands





### 2.3.4 Properties of Phosphine Complexes

### 2.3.4.1 Bonding and Electronic Properties

• Electron-donating ability: 
$$R_3P > Ar_3P > (RO)_3P$$

greater s-character of sp<sup>2</sup>-hybridized orbital of aryl =>weaker electron donor than alkyl

electron-donation: alkyl > alkoxy

•  $\pi$ -acceptor orbital: hybrid of P-X  $\sigma$ \*-orbital and phosphorus *d*-orbital (Figure 2.9)

