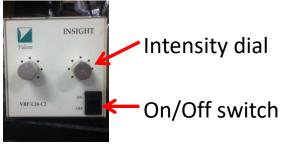

Lamps in Kanai laboratory

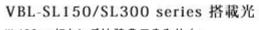
White LED (visible light) 株式会社ヴァロール製 http://www.valore.jp/led/vbl_s.html

Aldrich LED (435 or 400 nm) http://www.sigmaaldrich.com/japan/labware /micro-photochemical-reactor.html

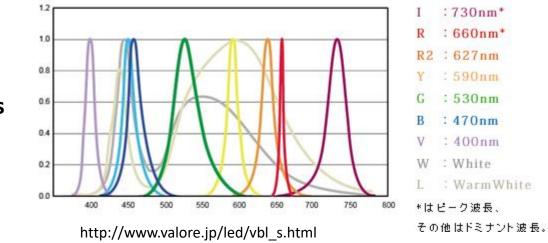
LED of specific wavelength (e.g. purple or green) 株式会社ヴァロール製 http://www.valore.jp/led/vbl_s.html

UV LED (365 nm) 大興製作所製 http://www.daico.co.jp/products /products.php?id=21


Setup of photoreactions (visible light LED)


Reaction vessel

LED lamp


- Put the reaction vessel ca. 2 cm from the lamp.
- White LED is stored in a box behind the old glove box (4F refresh room).
- Light intensity can be modulated with 2 dials.

Controller of Valore LEDs

※ 400 nm にレンズは装着できません。

Spectra of Valore LEDs

Setup of photoreactions (UV)

Run reactions in the UV-cut box. (It is in the measurement room of 4th floor.)

[CAUTION!] UV is harmful. Never use UV lamps out of the box.

<u>37-degree experiment</u>

500 nm LEDs are used in Sohma group for biological study. They are stored in

- Incubator at 4F
- Eisai 1F

<u>Tips</u>

[In general]

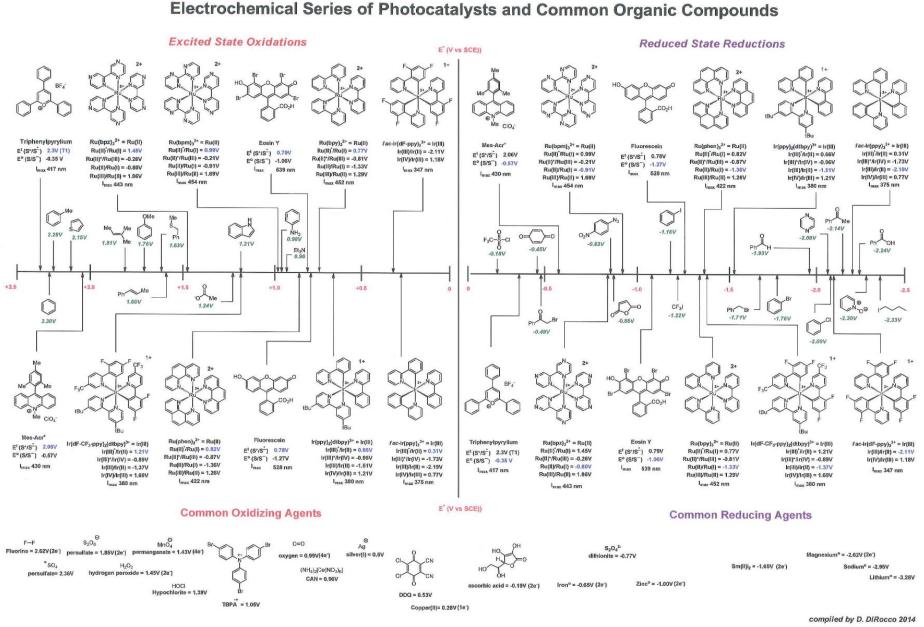
- Photoreactions should be run in a test tube or a screw vial. Flasks do not give good results.
- Large scale reactions usually result in poor yield.

[Reaction in a screw vial]

- Vials can be put in a fraction collector (large), then in front of the lamp. (See appendix 3)
- Aldrich LED is suitable for a 4 mL screw vial.

[For visible light]

- White LED is recommended for initial trials.
- Light is too shiny for people around you. Put cartons or aluminum foils around the reaction.


[For UV]

- UV light is harmful, so be sure to use it inside the UV-cut box.
- Turn on the fan attached on the UV-cut box (in order to release the heat inside the box).

[Recommended reviews of photoredox catalysis]

- 有機合成化学協会誌 2014, 72, 538.
- *Chem. Rev.* **2013**, *113*, 5322. (with λ_{max} and $E_{1/2}$ of representative photoredox catalysts)

Appendix 1: Redox potential of common photocatalysts

http://brsmblog.com/wp-content/uploads/2014/09/Electrochemical-Series.pdf

Appendix 2: Absorption and excited state lifetime of common photocatalysts

entry	photo catalyst	excited-state lifetime, τ (ns)	$\begin{array}{c} \operatorname{excitation} \lambda_{\max} \\ (nm) \end{array}$	$\frac{\text{emission } \lambda_{\text{max}}}{(\text{nm})}$	ref
1	Ru(bpm)32+	131 ^b	454	639 ^b	161
2	Ru(bpz)32+	740	443	591	55
3	Ru(bpy)32+	1100	452	615	1, 3
4	Ru(phen)32+	500	422	610 ^c	1, 129
5	Ir[dF(CF ₃) ppy] ₂ (dtbbpy) ⁺	2300	380	470	77
6	Ir(ppy)2(dtbbpy)*	557		581	58, 77
7	Cu(dap)2*	270		670 ^d	33
8	fac-Ir(ppy)3	1900	375	494 ^e	38

Modified from *Chem. Rev.* **2013**, *113*, 5322.

Appendix 3: Photoreactions with many vials

-3 vials can be piled up in one fraction collector.