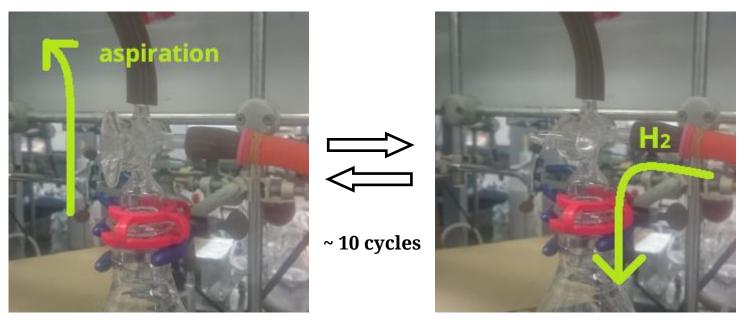

Hydrogenation (atmospheric pressure) with Pd/C

1. Put a catalyst, a solvent, and a substrate into a reaction vessel.

CAUTION! Pd/C is flammable. To avoid a fire:

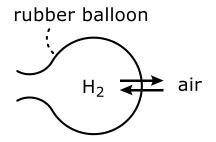
- 1. A fire distinguisher beside you.
- 2. Fill the reaction vessel with Ar.
- 3. Put Pd/C first (a vapor of the solvent can cause a fire).
- 4. Collect the powder paper used in weighing Pd/C in specialized bottles. Paper to 'the bottle for paper' (the left bottle in the right photo).
- 5. Remove O₂ from the solvent by sonication or Ar bubbling (if necessary).
- 6. Reduce the pressure moderately (water aspirator is recommended) when you replace air/Ar with H_2 .
- 7. The reaction and workup should be conducted inside a hood.

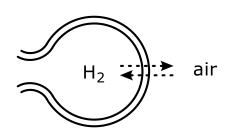

TIPS solvent effect: Generally, protic solvents (ROH, AcOH, etc.) accelerate the hydrogenation rates.

TIPS stirring speed: The hydrogenation proceeds faster as the reaction mixture is stirred faster.

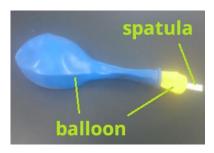
• Typical substrates: C–C double/triple bonds, benzyl ethers/esters, Cbz, N₃, NO₂, epoxides.

2. Fill the reaction vessel with H₂ gas.


To make the vessel full of H_2 , repeat around 10 times "aspirate the gas inside => let H_2 gas inside".


CAUTION! H₂ gas is explosive. To avoid a fire/explosion:

- 1. Excess H₂ gas should be discharged into a hood.
- 2. Reduce the pressure moderately (water aspirator is recommended).
- **3. You must not add another amount of Pd/C, even if you replace H**₂ with Ar in advance (H₂ may remain in the solvent). Filter Pd/C out, evaporate the solvent, and try hydrogenation from the beginning again when the reaction did not finish.
- 4. The reaction and workup should be conducted inside a hood.


TIPS You should prepare double-layered balloons to keep H₂ inside for longer time.

H₂ easily pass through a single layer of a rubber balloon.

H₂ stays longer inside with a double-layered balloon.

One balloon put into another with a spatula.

You can keep H₂ for 6~12 hours (my feeling) with double-layered balloon.

TIPS You can use 2 balloons when you try a large-scale hydrogenation (the right photo).

*Water aspirator is too weak to reduce sufficiently the pressure in a large flask: a benchtop pump is better then.

TIPS You can use beach balls (= vinyl balloons) instead of rubber balloons.

 H_2 stays longer inside beach balls than inside double-layered rubber balloons. If you are concerned about H_2 /air exchange, you can try beach balls.

*Rubber balloons have tension, and can apply more pressure of H₂ to the reaction mixture than beach balls. This characteristic is a trade-off.


TIPS MS is useful when TLC gives no information whether hydrogenation finishes or not.

3. Removal of Pd/C — Celite filtration

CAUTION! Pd/C adsorbing H₂ is more flammable than new Pd/C. You must not dry it out.

You detach the balloon and release H₂ into a hood, then replace the gas inside with Ar. After that you remove Pd/C from the reaction mixture by Celite filtration.

*Chlorinated solvents (CH₂Cl₂, CH₃Cl) are nonflammable. They are safe when you wash Pd/C on Celite.

The waste Celite containing Pd/C is collected in specialized bottles in the same way as paper adsorbing Pd/C. Celite to 'the bottle for Celite' (the right bottle in the right photo).

4. Appendix

Starting Material	Product	Pd/C	Pd/C(en)	Pd/Fib	Pd/PEI
alkynes	alkanes	•	•	•	•
azides	amines	•	•	•	
olefins	alkanes	•	•	•	
Ar–NO ₂	Ar-NH ₂	•	•	•	
Ar–X	Ar–H	•	•		
Ar–NH-Cbz	Ar–NH ₂	•	•		
R-CO ₂ Bn	R-CO ₂ H	•	•		
R–NH–Cbz	R-NH ₂	•			
epoxides	alcohols	•			
R/Ar–OBn	R/Ar–OH	•			
R/Ar-OTBS/OTES	R/Ar–OH	•			

en: ethylenediamine, Fib: fibroin, PEI: polyethyleneimine; cf. http://www.wako-chem.co.jp/siyaku/product/chemical/kouso/pdf/4.pdf